1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Review of catalytic systems and thermodynamics for the Guerbet condensation reaction and challenges for biomass valorization

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review deals with homogeneous and heterogeneous catalytic processes for the Guerbet condensation, as well as discusses biomass sources, thermodynamics and technological considerations.

          Abstract

          The Guerbet condensation reaction is an alcohol coupling reaction that has been known for more than a century. Because of the increasing availability of bio-based alcohol feedstock, this reaction is of growing importance and interest in terms of value chains of renewable chemical and biofuel production. Due to the specific branching pattern of the alcohol products, the Guerbet reaction has many interesting applications. In comparison to their linear isomers, branched-chain Guerbet alcohols have extremely low melting points and excellent fluidity. This review provides thermodynamic insights and unravels the various mechanistic steps involved. A comprehensive overview of the homogeneous, heterogeneous and combined homogeneous and heterogeneous catalytic systems described in published reports and patents is also given. Technological considerations, challenges and perspectives for the Guerbet chemistry are discussed.

          Related collections

          Most cited references 136

          • Record: found
          • Abstract: not found
          • Article: not found

          Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels.

            Global energy and environmental problems have stimulated increased efforts towards synthesizing biofuels from renewable resources. Compared to the traditional biofuel, ethanol, higher alcohols offer advantages as gasoline substitutes because of their higher energy density and lower hygroscopicity. In addition, branched-chain alcohols have higher octane numbers compared with their straight-chain counterparts. However, these alcohols cannot be synthesized economically using native organisms. Here we present a metabolic engineering approach using Escherichia coli to produce higher alcohols including isobutanol, 1-butanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol from glucose, a renewable carbon source. This strategy uses the host's highly active amino acid biosynthetic pathway and diverts its 2-keto acid intermediates for alcohol synthesis. In particular, we have achieved high-yield, high-specificity production of isobutanol from glucose. The strategy enables the exploration of biofuels beyond those naturally accumulated to high quantities in microbial fermentation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial production of fatty-acid-derived fuels and chemicals from plant biomass.

              Increasing energy costs and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. Major efforts to this end are focused on the microbial production of high-energy fuels by cost-effective 'consolidated bioprocesses'. Fatty acids are composed of long alkyl chains and represent nature's 'petroleum', being a primary metabolite used by cells for both chemical and energy storage functions. These energy-rich molecules are today isolated from plant and animal oils for a diverse set of products ranging from fuels to oleochemicals. A more scalable, controllable and economic route to this important class of chemicals would be through the microbial conversion of renewable feedstocks, such as biomass-derived carbohydrates. Here we demonstrate the engineering of Escherichia coli to produce structurally tailored fatty esters (biodiesel), fatty alcohols, and waxes directly from simple sugars. Furthermore, we show engineering of the biodiesel-producing cells to express hemicellulases, a step towards producing these compounds directly from hemicellulose, a major component of plant-derived biomass.
                Bookmark

                Author and article information

                Journal
                CSTAGD
                Catalysis Science & Technology
                Catal. Sci. Technol.
                Royal Society of Chemistry (RSC)
                2044-4753
                2044-4761
                2015
                2015
                : 5
                : 8
                : 3876-3902
                Article
                10.1039/C5CY00359H
                © 2015
                Product
                Self URI (article page): http://xlink.rsc.org/?DOI=C5CY00359H

                Comments

                Comment on this article