22
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Destabilizing RET in targeted treatment of thyroid cancers

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metastatic differentiated thyroid cancers (DTC) are resistant to traditional chemotherapy. Kinase inhibitors have shown promise in patients with progressive DTC, but dose-limiting toxicity is commonplace. HSP90 regulates protein degradation of several growth-mediating kinases such as RET, and we hypothesized that HSP90 inhibitor (AUY922) could inhibit RET-mediated medullary thyroid cancer (MTC) as well as papillary thyroid cancer (PTC) cell growth and also radioactive iodine uptake by PTC cells. Studies utilized MTC cell lines TT (C634W) and MZ-CRC-1 (M918T) and the PTC cell line TPC-1 (RET/PTC1). Cell viability was assessed with MTS assays and apoptosis by flow cytometry. Signaling target expression was determined by western blot and radioiodine uptake measured with a gamma counter. Prolonged treatment of both MTC cell lines with AUY922 simultaneously inhibited both MAPK and mTOR pathways and significantly induced apoptosis (58.7 and 78.7% reduction in MZ-CRC-1 and TT live cells respectively, following 1 μM AUY922; P<0.02). Similarly in the PTC cell line, growth and signaling targets were inhibited, and also a 2.84-fold increase in radioiodine uptake was observed following AUY922 administration ( P=0.015). AUY922 demonstrates in vitro activity against MTC and PTC cell lines. We observed a potent dose-dependent increase in apoptosis in MTC cell lines following drug administration confirming its anti-tumorigenic effects. Western blots confirm inhibition of pro-survival proteins including AKT suggesting this as the mechanism of cell death. In a functional study, we observed an increase in radioiodine uptake in the PTC cell line following AUY922 treatment. We believe HSP90 inhibition could be a viable alternative for treatment of RET-driven chemo-resistant thyroid cancers.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer.

          Numerous studies have established a causal link between aberrant mammalian target of rapamycin (mTOR) activation and tumorigenesis, indicating that mTOR inhibition may have therapeutic potential. In this study, we show that rapamycin and its analogs activate the MAPK pathway in human cancer, in what represents a novel mTORC1-MAPK feedback loop. We found that tumor samples from patients with biopsy-accessible solid tumors of advanced disease treated with RAD001, a rapamycin derivative, showed an administration schedule-dependent increase in activation of the MAPK pathway. RAD001 treatment also led to MAPK activation in a mouse model of prostate cancer. We further show that rapamycin-induced MAPK activation occurs in both normal cells and cancer cells lines and that this feedback loop depends on an S6K-PI3K-Ras pathway. Significantly, pharmacological inhibition of the MAPK pathway enhanced the antitumoral effect of mTORC1 inhibition by rapamycin in cancer cells in vitro and in a xenograft mouse model. Taken together, our findings identify MAPK activation as a consequence of mTORC1 inhibition and underscore the potential of a combined therapeutic approach with mTORC1 and MAPK inhibitors, currently employed as single agents in the clinic, for the treatment of human cancers.
            • Record: found
            • Abstract: found
            • Article: not found

            A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors.

            Heat shock protein 90 (Hsp90) is a molecular chaperone that plays a key role in the conformational maturation of oncogenic signalling proteins, including HER-2/ErbB2, Akt, Raf-1, Bcr-Abl and mutated p53. Hsp90 inhibitors bind to Hsp90, and induce the proteasomal degradation of Hsp90 client proteins. Although Hsp90 is highly expressed in most cells, Hsp90 inhibitors selectively kill cancer cells compared to normal cells, and the Hsp90 inhibitor 17-allylaminogeldanamycin (17-AAG) is currently in phase I clinical trials. However, the molecular basis of the tumour selectivity of Hsp90 inhibitors is unknown. Here we report that Hsp90 derived from tumour cells has a 100-fold higher binding affinity for 17-AAG than does Hsp90 from normal cells. Tumour Hsp90 is present entirely in multi-chaperone complexes with high ATPase activity, whereas Hsp90 from normal tissues is in a latent, uncomplexed state. In vitro reconstitution of chaperone complexes with Hsp90 resulted in increased binding affinity to 17-AAG, and increased ATPase activity. These results suggest that tumour cells contain Hsp90 complexes in an activated, high-affinity conformation that facilitates malignant progression, and that may represent a unique target for cancer therapeutics.
              • Record: found
              • Abstract: found
              • Article: not found

              Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification.

              Cell lines derived from human cancers provide critical tools to study disease mechanisms and develop novel therapies. Recent reports indicate that up to 36% of cell lines are cross- contaminated. We evaluated 40 reported thyroid cancer-derived cell lines using short tandem repeat and single nucleotide polymorphism array analysis. Only 23 of 40 cell lines tested have unique genetic profiles. The following groups of cell lines are likely derivatives of the same cell line: BHP5-16, BHP17-10, BHP14-9, and NPA87; BHP2-7, BHP10-3, BHP7-13, and TPC1; KAT5, KAT10, KAT4, KAT7, KAT50, KAK1, ARO81-1, and MRO87-1; and K1 and K2. The unique cell lines include BCPAP, KTC1, TT2609-C02, FTC133, ML1, WRO82-1, 8505C, SW1736, Cal-62, T235, T238, Uhth-104, ACT-1, HTh74, KAT18, TTA1, FRO81-2, HTh7, C643, BHT101, and KTC-2. The misidentified cell lines included the DRO90-1, which matched the melanoma-derived cell line, A-375. The ARO81-1 and its derivatives matched the HT-29 colon cancer cell line, and the NPA87 and its derivatives matched the M14/MDA-MB-435S melanoma cell line. TTF-1 and Pax-8 mRNA levels were determined in the unique cell lines. Many of these human cell lines have been widely used in the thyroid cancer field for the past 20 yr and are not only redundant, but not of thyroid origin. These results emphasize the importance of cell line integrity, and provide the short tandem repeat profiles for a panel of thyroid cancer cell lines that can be used as a reference for comparison of cell lines from other laboratories.

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                16 November 2015
                1 January 2016
                : 5
                : 1
                : 10-19
                Affiliations
                [1 ]Cancer Genetics Laboratory, Kolling Institute of Medical Research , Sydney, New South Wales, Australia
                [2 ]Department of Endocrinology, Royal North Shore Hospital, The University of Sydney , Sydney, New South Wales, 2065, Australia
                Author notes
                Correspondence should be addressed to R J Clifton-Bligh Email: jclifton@ 123456med.usyd.edu.au
                Article
                EC150098
                10.1530/EC-15-0098
                4674629
                26574568
                1006176f-97b8-4e5c-aab2-f8f47f4c3ab1
                © 2016 The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License.

                History
                : 13 November 2015
                : 16 November 2015
                Categories
                Research

                thyroid cancer,hsp90,auy922,ret,mapk,mtor
                thyroid cancer, hsp90, auy922, ret, mapk, mtor

                Comments

                Comment on this article

                Related Documents Log