34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The roles and impacts of human hunter-gatherers in North Pacific marine food webs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is a nearly 10,000-year history of human presence in the western Gulf of Alaska, but little understanding of how human foragers integrated into and impacted ecosystems through their roles as hunter-gatherers. We present two highly resolved intertidal and nearshore food webs for the Sanak Archipelago in the eastern Aleutian Islands and use them to compare trophic roles of prehistoric humans to other species. We find that the native Aleut people played distinctive roles as super-generalist and highly-omnivorous consumers closely connected to other species. Although the human population was positioned to have strong effects, arrival and presence of Aleut people in the Sanak Archipelago does not appear associated with long-term extinctions. We simulated food web dynamics to explore to what degree introducing a species with trophic roles like those of an Aleut forager, and allowing for variable strong feeding to reflect use of hunting technology, is likely to trigger extinctions. Potential extinctions decreased when an invading omnivorous super-generalist consumer focused strong feeding on decreasing fractions of its possible resources. This study presents the first assessment of the structural roles of humans as consumers within complex ecological networks, and potential impacts of those roles and feeding behavior on associated extinctions.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Food-web structure and network theory: The role of connectance and size.

          Networks from a wide range of physical, biological, and social systems have been recently described as "small-world" and "scale-free." However, studies disagree whether ecological networks called food webs possess the characteristic path lengths, clustering coefficients, and degree distributions required for membership in these classes of networks. Our analysis suggests that the disagreements are based on selective use of relatively few food webs, as well as analytical decisions that obscure important variability in the data. We analyze a broad range of 16 high-quality food webs, with 25-172 nodes, from a variety of aquatic and terrestrial ecosystems. Food webs generally have much higher complexity, measured as connectance (the fraction of all possible links that are realized in a network), and much smaller size than other networks studied, which have important implications for network topology. Our results resolve prior conflicts by demonstrating that although some food webs have small-world and scale-free structure, most do not if they exceed a relatively low level of connectance. Although food-web degree distributions do not display a universal functional form, observed distributions are systematically related to network connectance and size. Also, although food webs often lack small-world structure because of low clustering, we identify a continuum of real-world networks including food webs whose ratios of observed to random clustering coefficients increase as a power-law function of network size over 7 orders of magnitude. Although food webs are generally not small-world, scale-free networks, food-web topology is consistent with patterns found within those classes of networks.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Switching in General Predators: Experiments on Predator Specificity and Stability of Prey Populations

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Allometric scaling enhances stability in complex food webs.

              Classic local stability theory predicts that complex ecological networks are unstable and are unlikely to persist despite empiricists' abundant documentation of such complexity in nature. This contradiction has puzzled biologists for decades. While some have explored how stability may be achieved in small modules of a few interacting species, rigorous demonstrations of how large complex and ecologically realistic networks dynamically persist remain scarce and inadequately understood. Here, we help fill this void by combining structural models of complex food webs with nonlinear bioenergetic models of population dynamics parameterized by biological rates that are allometrically scaled to populations' average body masses. Increasing predator-prey body mass ratios increase population persistence up to a saturation level that is reached by invertebrate and ectotherm vertebrate predators when being 10 or 100 times larger than their prey respectively. These values are corroborated by empirical predator-prey body mass ratios from a global data base. Moreover, negative effects of diversity (i.e. species richness) on stability (i.e. population persistence) become neutral or positive relationships at these empirical ratios. These results demonstrate that the predator-prey body mass ratios found in nature may be key to enabling persistence of populations in complex food webs and stabilizing the diversity of natural ecosystems.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                17 February 2016
                2016
                : 6
                : 21179
                Affiliations
                [1 ]Santa Fe Institute , 1399 Hyde Park Road, Santa Fe, NM 87501, USA
                [2 ]Center for Virtualization and Applied Spatial Technologies, University of South Florida , 4202 E. Fowler Ave., NES 107, Tampa, FL 33620
                [3 ]Canadian Museum of History , 100 Laurier Street, Gatineau, QC K1A 0M8, Canada
                [4 ]Ecology Center, Utah State University , 5205 Old Main Hill, Logan, UT 84322-5205, USA
                [5 ]The Sandhill Institute for Complexity and Sustainability , Grand Forks, British Columbia, Canada
                [6 ]VibrantData Inc. , 943 Clay Street, San Francisco, CA 94108
                [7 ]The Natural Capital Project, Stanford University , 371 Serra Mall, Stanford, CA 94305, USA
                [8 ]School for Environmental and Forest Sciences, 4000 15th Ave NE, University of Washington , Seattle, WA 98195, USA
                Author notes
                Article
                srep21179
                10.1038/srep21179
                4756680
                26884149
                1007c18d-7237-4300-8170-0f2dbf4125e4
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 16 July 2015
                : 19 January 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article