37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Major Population Expansion of East Asians Began before Neolithic Time: Evidence of mtDNA Genomes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is a major question in archaeology and anthropology whether human populations started to grow primarily after the advent of agriculture, i.e., the Neolithic time, especially in East Asia, which was one of the centers of ancient agricultural civilization. To answer this question requires an accurate estimation of the time of lineage expansion as well as that of population expansion in a population sample without ascertainment bias. In this study, we analyzed all available mtDNA genomes of East Asians ascertained by random sampling, a total of 367 complete mtDNA sequences generated by the 1000 Genome Project, including 249 Chinese (CHB, CHD, and CHS) and 118 Japanese (JPT). We found that major mtDNA lineages underwent expansions, all of which, except for two JPT-specific lineages, including D4, D4b2b, D4a, D4j, D5a2a, A, N9a, F1a1'4, F2, B4, B4a, G2a1 and M7b1'2'4, occurred before 10 kya, i.e., before the Neolithic time (symbolized by Dadiwan Culture at 7.9 kya) in East Asia. Consistent to this observation, the further analysis showed that the population expansion in East Asia started at 13 kya and lasted until 4 kya. The results suggest that the population growth in East Asia constituted a need for the introduction of agriculture and might be one of the driving forces that led to the further development of agriculture.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago.

          The origin of millet from Neolithic China has generally been accepted, but it remains unknown whether common millet (Panicum miliaceum) or foxtail millet (Setaria italica) was the first species domesticated. Nor do we know the timing of their domestication and their routes of dispersal. Here, we report the discovery of husk phytoliths and biomolecular components identifiable solely as common millet from newly excavated storage pits at the Neolithic Cishan site, China, dated to between ca. 10,300 and ca. 8,700 calibrated years before present (cal yr BP). After ca. 8,700 cal yr BP, the grain crops began to contain a small quantity of foxtail millet. Our research reveals that the common millet was the earliest dry farming crop in East Asia, which is probably attributed to its excellent resistance to drought.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of purifying and adaptive selection on regional variation in human mtDNA.

            A phylogenetic analysis of 1125 global human mitochondrial DNA (mtDNA) sequences permitted positioning of all nucleotide substitutions according to their order of occurrence. The relative frequency and amino acid conservation of internal branch replacement mutations was found to increase from tropical Africa to temperate Europe and arctic northeastern Siberia. Particularly highly conserved amino acid substitutions were found at the roots of multiple mtDNA lineages from higher latitudes. These same lineages correlate with increased propensity for energy deficiency diseases as well as longevity. Thus, specific mtDNA replacement mutations permitted our ancestors to adapt to more northern climates, and these same variants are influencing our health today.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              mtDNA variation among Greenland Eskimos: the edge of the Beringian expansion.

              The Eskimo-Aleut language phylum is distributed from coastal Siberia across Alaska and Canada to Greenland and is well distinguished from the neighboring Na Dene languages. Genetically, however, the distinction between Na Dene and Eskimo-Aleut speakers is less clear. In order to improve the genetic characterization of Eskimos in general and Greenlanders in particular, we have sequenced hypervariable segment I (HVS-I) of the mitochondrial DNA (mtDNA) control region and typed relevant RFLP sites in the mtDNA of 82 Eskimos from Greenland. A comparison of our data with published sequences demonstrates major mtDNA types shared between Na Dene and Eskimo, indicating a common Beringian history within the Holocene. We further confirm the presence of an Eskimo-specific mtDNA subgroup characterized by nucleotide position 16265G within mtDNA group A2. This subgroup is found in all Eskimo groups analyzed so far and is estimated to have originated <3,000 years ago. A founder analysis of all Eskimo and Chukchi A2 types indicates that the Siberian and Greenland ancestral mtDNA pools separated around the time when the Neo-Eskimo culture emerged. The Greenland mtDNA types are a subset of the Alaskan mtDNA variation: they lack the groups D2 and D3 found in Siberia and Alaska and are exclusively A2 but at the same time lack the A2 root type. The data are in agreement with the view that the present Greenland Eskimos essentially descend from Alaskan Neo-Eskimos. European mtDNA types are absent in our Eskimo sample.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                6 October 2011
                : 6
                : 10
                : e25835
                Affiliations
                [1 ]State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
                [2 ]Chinese Academy of Sciences and Max-Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
                [3 ]Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
                [4 ]Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
                University of Cambridge, United Kingdom
                Author notes

                Conceived and designed the experiments: H-XZ SY LJ. Performed the experiments: H-XZ SY Z-DQ. Analyzed the data: H-XZ SY YW Z-DQ. Contributed reagents/materials/analysis tools: YW. Wrote the paper: H-XZ SY Z-DQ J-ZT HL LJ.

                Article
                PONE-D-11-09023
                10.1371/journal.pone.0025835
                3188578
                21998705
                1017cb4a-8a49-4f44-8ec4-67d608fc4a0b
                Zheng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 21 May 2011
                : 12 September 2011
                Page count
                Pages: 7
                Categories
                Research Article
                Biology
                Genetics
                Human Genetics
                Population Biology
                Population Genetics
                Effective Population Size
                Social and Behavioral Sciences
                Anthropology
                Biological Anthropology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article