5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Translational Utility of Liquid Biopsies in Thyroid Cancer Management

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Thyroid cancer remains a challenging malignancy, and it is difficultt to scale appropriate monitoring and therapy. Monitoring of the outcomes of thyroid cancer treatment currently relies on invasive tissue biopsies or repeat imaging involving radiation exposure. Liquid biopsies are a novel technique, which assess for common mutations associated with cancer through a simple blood sample. This review will assess the utility of liquid biopsies in the diagnosis and management of thyroid cancer and outline future directions which may optimise patient outcomes.

          Abstract

          Liquid biopsies are a novel technique to assess for either circulating tumor cells (CTC) or circulating tumor DNA (ctDNA and microRNA (miRNA)) in peripheral blood samples of cancer patients. The diagnostic role of liquid biopsy in oncology has expanded in recent years, particularly in lung, colorectal and breast cancer. In thyroid cancer, the role of liquid biopsy in either diagnosis or prognosis is beginning to translate from the lab to the clinic. In this review, we describe the evolution of liquid biopsies in detecting CTC, ctDNA and miRNA in thyroid cancer patients, together with its limitations and future directions in clinical practice.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer.

          Thyroid nodules are a common clinical problem, and differentiated thyroid cancer is becoming increasingly prevalent. Since the American Thyroid Association's (ATA's) guidelines for the management of these disorders were revised in 2009, significant scientific advances have occurred in the field. The aim of these guidelines is to inform clinicians, patients, researchers, and health policy makers on published evidence relating to the diagnosis and management of thyroid nodules and differentiated thyroid cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge

            The Cancer Genome Atlas (TCGA) is a public funded project that aims to catalogue and discover major cancer-causing genomic alterations to create a comprehensive “atlas” of cancer genomic profiles. So far, TCGA researchers have analysed large cohorts of over 30 human tumours through large-scale genome sequencing and integrated multi-dimensional analyses. Studies of individual cancer types, as well as comprehensive pan-cancer analyses have extended current knowledge of tumorigenesis. A major goal of the project was to provide publicly available datasets to help improve diagnostic methods, treatment standards, and finally to prevent cancer. This review discusses the current status of TCGA Research Network structure, purpose, and achievements.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Most mammalian mRNAs are conserved targets of microRNAs.

              MicroRNAs (miRNAs) are small endogenous RNAs that pair to sites in mRNAs to direct post-transcriptional repression. Many sites that match the miRNA seed (nucleotides 2-7), particularly those in 3' untranslated regions (3'UTRs), are preferentially conserved. Here, we overhauled our tool for finding preferential conservation of sequence motifs and applied it to the analysis of human 3'UTRs, increasing by nearly threefold the detected number of preferentially conserved miRNA target sites. The new tool more efficiently incorporates new genomes and more completely controls for background conservation by accounting for mutational biases, dinucleotide conservation rates, and the conservation rates of individual UTRs. The improved background model enabled preferential conservation of a new site type, the "offset 6mer," to be detected. In total, >45,000 miRNA target sites within human 3'UTRs are conserved above background levels, and >60% of human protein-coding genes have been under selective pressure to maintain pairing to miRNAs. Mammalian-specific miRNAs have far fewer conserved targets than do the more broadly conserved miRNAs, even when considering only more recently emerged targets. Although pairing to the 3' end of miRNAs can compensate for seed mismatches, this class of sites constitutes less than 2% of all preferentially conserved sites detected. The new tool enables statistically powerful analysis of individual miRNA target sites, with the probability of preferentially conserved targeting (P(CT)) correlating with experimental measurements of repression. Our expanded set of target predictions (including conserved 3'-compensatory sites), are available at the TargetScan website, which displays the P(CT) for each site and each predicted target.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                09 July 2021
                July 2021
                : 13
                : 14
                : 3443
                Affiliations
                [1 ]Department of Endocrinology, Royal North Shore Hospital, Sydney, NSW 2052, Australia; matti.gild@ 123456sydney.edu.au (M.L.G.); roderick.cliftonbligh@ 123456sydney.edu.au (R.J.C.-B.); martyn.bullock@ 123456sydney.edu.au (M.B.)
                [2 ]Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2052, Australia; mche2952@ 123456uni.sydney.edu.au
                Author notes
                Author information
                https://orcid.org/0000-0002-3740-5509
                Article
                cancers-13-03443
                10.3390/cancers13143443
                8306718
                34298656
                101aaed3-5099-450c-8294-3ff7d579d654
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 11 June 2021
                : 08 July 2021
                Categories
                Review

                liquid biopsy,circulating tumor dna (ctdna),cell free dna (cfdna),microrna (mirna),thyroid cancer

                Comments

                Comment on this article