17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cardiovascular risk profile: Cross-sectional analysis of motivational determinants, physical fitness and physical activity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cardiovascular risk factors are associated with physical fitness and, to a lesser extent, physical activity. Lifestyle interventions directed at enhancing physical fitness in order to decrease the risk of cardiovascular diseases should be extended. To enable the development of effective lifestyle interventions for people with cardiovascular risk factors, we investigated motivational, social-cognitive determinants derived from the Theory of Planned Behavior (TPB) and other relevant social psychological theories, next to physical activity and physical fitness.

          Methods

          In the cross-sectional Utrecht Police Lifestyle Intervention Fitness and Training (UP-LIFT) study, 1298 employees (aged 18 to 62) were asked to complete online questionnaires regarding social-cognitive variables and physical activity. Cardiovascular risk factors and physical fitness (peak VO 2) were measured.

          Results

          For people with one or more cardiovascular risk factors (78.7% of the total population), social-cognitive variables accounted for 39% (p < .001) of the variance in the intention to engage in physical activity for 60 minutes every day. Important correlates of intention to engage in physical activity were attitude (beta = .225, p < .001), self-efficacy (beta = .271, p < .001), descriptive norm (beta = .172, p < .001) and barriers (beta = -.169, p < .01). Social-cognitive variables accounted for 52% (p < .001) of the variance in physical active behaviour (being physical active for 60 minutes every day). The intention to engage in physical activity (beta = .469, p < .001) and self-efficacy (beta = .243, p < .001) were, in turn, important correlates of physical active behavior.

          In addition to the prediction of intention to engage in physical activity and physical active behavior, we explored the impact of the intensity of physical activity. The intentsity of physical activity was only significantly related to physical active behavior (beta = .253, p < .01, R 2 = .06, p < .001). An important goal of our study was to investigate the relationship between physical fitness, the intensity of physical activity and social-cognitive variables. Physical fitness (R 2 = .23, p < .001) was positively associated with physical active behavior (beta = .180, p < .01), self-efficacy (beta = .180, p < .01) and the intensity of physical activity (beta = .238, p < .01).

          For people with one or more cardiovascular risk factors, 39.9% had positive intentions to engage in physical activity and were also physically active, and 10.5% had a low intentions but were physically active. 37.7% had low intentions and were physically inactive, and about 11.9% had high intentions but were physically inactive.

          Conclusions

          This study contributes to our ability to optimize cardiovascular risk profiles by demonstrating an important association between physical fitness and social-cognitive variables. Physical fitness can be predicted by physical active behavior as well as by self-efficacy and the intensity of physical activity, and the latter by physical active behavior.

          Physical active behavior can be predicted by intention, self-efficacy, descriptive norms and barriers. Intention to engage in physical activity by attitude, self-efficacy, descriptive norms and barriers. An important input for lifestyle changes for people with one or more cardiovascular risk factors was that for ca. 40% of the population the intention to engage in physical activity was in line with their actual physical active behavior.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Is physical activity or physical fitness more important in defining health benefits?

          We addressed three questions: 1) Is there a dose-response relation between physical activity and health? 2) Is there a dose-response relation between cardiorespiratory fitness and health? 3) If both activity and fitness have a dose-response relation to health, is it possible to determine which exposure is more important? We identified articles by PubMed search (restricted from 1/1/90 to 8/25/00) using keywords related to physical activity, physical fitness, and health. An author scanned titles and abstracts of 9831 identified articles. We included for thorough review articles that included three or more categories of activity or fitness and a health outcome and excluded articles on clinical trials, review papers, comments, letters, case reports, and nonhuman studies. We used an evidence-based approach to evaluate the quality of the published data. We summarized results from 67 articles meeting final selection criteria. There is good consensus across studies with most showing an inverse dose-response gradient across both activity and fitness categories for morbidity from coronary heart disease (CHD), stroke, cardiovascular disease (CVD), or cancer; and for CVD, cancer, or all-cause mortality. All studies reviewed were prospective observational investigations; thus, conclusions are based on Evidence Category C. 1) There is a consistent gradient across activity groups indicating greater longevity and reduced risk of CHD, CVD, stroke, and colon cancer in more active individuals. 2) Studies are compelling in the consistency and steepness of the gradient across fitness groups. Most show a curvilinear gradient, with a steep slope at low levels of fitness and an asymptote in the upper part of the fitness distribution. 3) It is not possible to conclude whether activity or fitness is more important for health. Future studies should define more precisely the shape of the dose-response gradient across activity or fitness groups, evaluate the role of musculoskeletal fitness, and investigate additional health outcomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors.

            Previous meta-analyses of randomized controlled trials on the effects of chronic dynamic aerobic endurance training on blood pressure reported on resting blood pressure only. Our aim was to perform a comprehensive meta-analysis including resting and ambulatory blood pressure, blood pressure-regulating mechanisms, and concomitant cardiovascular risk factors. Inclusion criteria of studies were: random allocation to intervention and control; endurance training as the sole intervention; inclusion of healthy sedentary normotensive or hypertensive adults; intervention duration of > or =4 weeks; availability of systolic or diastolic blood pressure; and publication in a peer-reviewed journal up to December 2003. The meta-analysis involved 72 trials, 105 study groups, and 3936 participants. After weighting for the number of trained participants and using a random-effects model, training induced significant net reductions of resting and daytime ambulatory blood pressure of, respectively, 3.0/2.4 mm Hg (P<0.001) and 3.3/3.5 mm Hg (P<0.01). The reduction of resting blood pressure was more pronounced in the 30 hypertensive study groups (-6.9/-4.9) than in the others (-1.9/-1.6; P<0.001 for all). Systemic vascular resistance decreased by 7.1% (P<0.05), plasma norepinephrine by 29% (P<0.001), and plasma renin activity by 20% (P<0.05). Body weight decreased by 1.2 kg (P<0.001), waist circumference by 2.8 cm (P<0.001), percent body fat by 1.4% (P<0.001), and the homeostasis model assessment index of insulin resistance by 0.31 U (P<0.01); HDL cholesterol increased by 0.032 mmol/L(-1) (P<0.05). In conclusion, aerobic endurance training decreases blood pressure through a reduction of vascular resistance, in which the sympathetic nervous system and the renin-angiotensin system appear to be involved, and favorably affects concomitant cardiovascular risk factors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exercise for overweight or obesity

              Clinical trials have shown that exercise in adults with overweight or obesity can reduce bodyweight. There has been no quantitative systematic review of this in The Cochrane Library. To assess exercise as a means of achieving weight loss in people with overweight or obesity, using randomised controlled clinical trials. Studies were obtained from computerised searches of multiple electronic bibliographic databases. The last search was conducted in January 2006. Studies were included if they were randomised controlled trials that examined body weight change using one or more physical activity intervention in adults with overweight or obesity at baseline and loss to follow-up of participants of less than 15%. Two authors independently assessed trial quality and extracted data. The 43 studies included 3476 participants. Although significant heterogeneity in some of the main effects' analyses limited ability to pool effect sizes across some studies, a number of pooled effect sizes were calculated. When compared with no treatment, exercise resulted in small weight losses across studies. Exercise combined with diet resulted in a greater weight reduction than diet alone (WMD -1.1 kg; 95% confidence interval (CI) -1.5 to -0.6). Increasing exercise intensity increased the magnitude of weight loss (WMD -1.5 kg; 95% CI -2.3 to -0.7). There were significant differences in other outcome measures such as serum lipids, blood pressure and fasting plasma glucose. Exercise as a sole weight loss intervention resulted in significant reductions in diastolic blood pressure (WMD -2 mmHg; 95% CI -4 to -1), triglycerides (WMD -0.2 mmol/L; 95% CI -0.3 to -0.1) and fasting glucose (WMD -0.2 mmol/L; 95% CI -0.3 to -0.1). Higher intensity exercise resulted in greater reduction in fasting serum glucose than lower intensity exercise (WMD -0.3 mmol/L; 95% CI -0.5 to -0.2). No data were identified on adverse events, quality of life, morbidity, costs or on mortality. The results of this review support the use of exercise as a weight loss intervention, particularly when combined with dietary change. Exercise is associated with improved cardiovascular disease risk factors even if no weight is lost.
                Bookmark

                Author and article information

                Journal
                BMC Public Health
                BMC Public Health
                BioMed Central
                1471-2458
                2010
                7 October 2010
                : 10
                : 592
                Affiliations
                [1 ]Department of Health and Lifestyle, University of Applied Sciences, Utrecht, the Netherlands
                [2 ]Department of Work and Social Psychology, Maastricht University, Maastricht, the Netherlands
                [3 ]Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
                Article
                1471-2458-10-592
                10.1186/1471-2458-10-592
                3091554
                20929529
                10235582-b42d-4f3f-9c9a-1b62de423cc7
                Copyright ©2010 Sassen et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 January 2010
                : 7 October 2010
                Categories
                Research Article

                Public health
                Public health

                Comments

                Comment on this article