47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Comparative genomics provides evidence for an ancient genome duplication event in fish

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There are approximately 25 000 species in the division Teleostei and most are believed to have arisen during a relatively short period of time ca. 200 Myr ago. The discovery of 'extra' Hox gene clusters in zebrafish (Danio rerio), medaka (Oryzias latipes), and pufferfish (Fugu rubripes), has led to the hypothesis that genome duplication provided the genetic raw material necessary for the teleost radiation. We identified 27 groups of orthologous genes which included one gene from man, mouse and chicken, one or two genes from tetraploid Xenopus and two genes from zebrafish. A genome duplication in the ancestor of teleost fishes is the most parsimonious explanation for the observations that for 15 of these genes, the two zebrafish orthologues are sister sequences in phylogenies that otherwise match the expected organismal tree, the zebrafish gene pairs appear to have been formed at approximately the same time, and are unlinked. Phylogenies of nine genes differ a little from the tree predicted by the fish-specific genome duplication hypothesis: one tree shows a sister sequence relationship for the zebrafish genes but differs slightly from the expected organismal tree and in eight trees, one zebrafish gene is the sister sequence to a clade which includes the second zebrafish gene and orthologues from Xenopus, chicken, mouse and man. For these nine gene trees, deviations from the predictions of the fish-specific genome duplication hypothesis are poorly supported. The two zebrafish orthologues for each of the three remaining genes are tightly linked and are, therefore, unlikely to have been formed during a genome duplication event. We estimated that the unlinked duplicated zebrafish genes are between 300 and 450 Myr. Thus, genome duplication could have provided the genetic raw material for teleost radiation. Alternatively, the loss of different duplicates in different populations (i.e. 'divergent resolution') may have promoted speciation in ancient teleost populations.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          TreeView: an application to display phylogenetic trees on personal computers.

          R D Page (1996)
            • Record: found
            • Abstract: found
            • Article: not found

            Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea.

            A maximum likelihood method for inferring evolutionary trees from DNA sequence data was developed by Felsenstein (1981). In evaluating the extent to which the maximum likelihood tree is a significantly better representation of the true tree, it is important to estimate the variance of the difference between log likelihood of different tree topologies. Bootstrap resampling can be used for this purpose (Hasegawa et al. 1988; Hasegawa and Kishino 1989), but it imposes a great computation burden. To overcome this difficulty, we developed a new method for estimating the variance by expressing it explicitly. The method was applied to DNA sequence data from primates in order to evaluate the maximum likelihood branching order among Hominoidea. It was shown that, although the orangutan is convincingly placed as an outgroup of a human and African apes clade, the branching order among human, chimpanzee, and gorilla cannot be determined confidently from the DNA sequence data presently available when the evolutionary rate constancy is not assumed.
              • Record: found
              • Abstract: not found
              • Article: not found

              Distinguishing homologous from analogous proteins.

                Author and article information

                Journal
                Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences
                Phil. Trans. R. Soc. Lond. B
                The Royal Society
                0962-8436
                1471-2970
                October 29 2001
                October 29 2001
                October 29 2001
                October 29 2001
                : 356
                : 1414
                : 1661-1679
                Affiliations
                [1 ]Department of Biology, University of Konstanz, 78457, Konstanz, Germany
                Article
                10.1098/rstb.2001.0975
                1088543
                11604130
                1031ca35-163b-4b3d-9680-f2359057cabe
                © 2001
                History

                Comments

                Comment on this article

                Related Documents Log