24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Piper Species: A Comprehensive Review on Their Phytochemistry, Biological Activities and Applications

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Piper species are aromatic plants used as spices in the kitchen, but their secondary metabolites have also shown biological effects on human health. These plants are rich in essential oils, which can be found in their fruits, seeds, leaves, branches, roots and stems. Some Piper species have simple chemical profiles, while others, such as Piper nigrum, Piper betle, and Piper auritum, contain very diverse suites of secondary metabolites. In traditional medicine, Piper species have been used worldwide to treat several diseases such as urological problems, skin, liver and stomach ailments, for wound healing, and as antipyretic and anti-inflammatory agents. In addition, Piper species could be used as natural antioxidants and antimicrobial agents in food preservation. The phytochemicals and essential oils of Piper species have shown strong antioxidant activity, in comparison with synthetic antioxidants, and demonstrated antibacterial and antifungal activities against human pathogens. Moreover, Piper species possess therapeutic and preventive potential against several chronic disorders. Among the functional properties of Piper plants/extracts/active components the antiproliferative, anti-inflammatory, and neuropharmacological activities of the extracts and extract-derived bioactive constituents are thought to be key effects for the protection against chronic conditions, based on preclinical in vitro and in vivo studies, besides clinical studies. Habitats and cultivation of Piper species are also covered in this review. In this current work, available literature of chemical constituents of the essential oils Piper plants, their use in traditional medicine, their applications as a food preservative, their antiparasitic activities and other important biological activities are reviewed.

          Related collections

          Most cited references326

          • Record: found
          • Abstract: found
          • Article: not found

          Antimicrobial agents from plants: antibacterial activity of plant volatile oils.

          The volatile oils of black pepper [Piper nigrum L. (Piperaceae)], clove [Syzygium aromaticum (L.) Merr. & Perry (Myrtaceae)], geranium [Pelargonium graveolens L'Herit (Geraniaceae)], nutmeg [Myristica fragrans Houtt. (Myristicaceae), oregano [Origanum vulgare ssp. hirtum (Link) Letsw. (Lamiaceae)] and thyme [Thymus vulgaris L. (Lamiaceae)] were assessed for antibacterial activity against 25 different genera of bacteria. These included animal and plant pathogens, food poisoning and spoilage bacteria. The volatile oils exhibited considerable inhibitory effects against all the organisms under test while their major components demonstrated various degrees of growth inhibition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multi-target therapeutics: when the whole is greater than the sum of the parts.

            Drugs designed to act against individual molecular targets cannot usually combat multigenic diseases such as cancer, or diseases that affect multiple tissues or cell types such as diabetes and immunoinflammatory disorders. Combination drugs that impact multiple targets simultaneously are better at controlling complex disease systems, are less prone to drug resistance and are the standard of care in many important therapeutic areas. The combination drugs currently employed are primarily of rational design, but the increased efficacy they provide justifies in vitro discovery efforts for identifying novel multi-target mechanisms. In this review, we discuss the biological rationale for combination therapeutics, review some existing combination drugs and present a systematic approach to identify interactions between molecular pathways that could be leveraged for therapeutic benefit.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Evaluating predictive models of species’ distributions: criteria for selecting optimal models

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                MOLEFW
                Molecules
                Molecules
                MDPI AG
                1420-3049
                April 2019
                April 07 2019
                : 24
                : 7
                : 1364
                Article
                10.3390/molecules24071364
                30959974
                1031f013-1a8f-4138-b73f-cb1d2a8b99de
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article