65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression

      , , , , ,
      Neuroscience
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The concept that intestinal microbial composition not only affects the health of the gut, but also influences centrally-mediated systems involved in mood, is supported by a growing body of literature. Despite the emergent interest in brain-gut communication and its possible role in the pathogenesis of psychiatric disorders such as depression, particularly subtypes with accompanying gastrointestinal (GI) symptoms, there are few studies dedicated to the search for therapeutic solutions that address both central and peripheral facets of these illnesses. This study aims to assess the potential benefits of the probiotic Bifidobacterium infantis in the rat maternal separation (MS) model, a paradigm that has proven to be of value in the study of stress-related GI and mood disorders. MS adult rat offsprings were chronically treated with bifidobacteria or citalopram and subjected to the forced swim test (FST) to assess motivational state. Cytokine concentrations in stimulated whole blood samples, monoamine levels in the brain, and central and peripheral hypothalamic-pituitary-adrenal (HPA) axis measures were also analysed. MS reduced swim behavior and increased immobility in the FST, decreased noradrenaline (NA) content in the brain, and enhanced peripheral interleukin (IL)-6 release and amygdala corticotrophin-releasing factor mRNA levels. Probiotic treatment resulted in normalization of the immune response, reversal of behavioral deficits, and restoration of basal NA concentrations in the brainstem. These findings point to a more influential role for bifidobacteria in neural function, and suggest that probiotics may have broader therapeutic applications than previously considered. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

          Related collections

          Author and article information

          Journal
          Neuroscience
          Neuroscience
          Elsevier BV
          03064522
          November 2010
          November 2010
          : 170
          : 4
          : 1179-1188
          Article
          10.1016/j.neuroscience.2010.08.005
          20696216
          10391d5c-89e0-4054-914a-0a516b6fa2eb
          © 2010

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article