4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Morphine tolerance is attenuated in germfree mice and reversed by probiotics, implicating the role of gut microbiome

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prolonged exposure to opioids results in analgesic tolerance, drug overdose, and death. The mechanism underlying morphine analgesic tolerance still remains unresolved. We show that morphine analgesic tolerance was significantly attenuated in germfree (GF) and in pan-antibiotic−treated mice. Reconstitution of GF mice with naïve fecal microbiota reinstated morphine analgesic tolerance. We further demonstrated that tolerance was associated with microbial dysbiosis with selective depletion in Bifidobacteria and Lactobacillaeae. Probiotics, enriched with these bacterial communities, attenuated analgesic tolerance in morphine-treated mice. These results suggest that probiotic therapy during morphine administration may be a promising, safe, and inexpensive treatment to prolong morphine’s efficacy and attenuate analgesic tolerance. We hypothesize a vicious cycle of chronic morphine tolerance: morphine-induced gut dysbiosis leads to gut barrier disruption and bacterial translocation, initiating local gut inflammation through TLR2/4 activation, resulting in the activation of proinflammatory cytokines, which drives morphine tolerance.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors.

          Abdominal pain is common in the general population and, in patients with irritable bowel syndrome, is attributed to visceral hypersensitivity. We found that oral administration of specific Lactobacillus strains induced the expression of mu-opioid and cannabinoid receptors in intestinal epithelial cells, and mediated analgesic functions in the gut-similar to the effects of morphine. These results suggest that the microbiology of the intestinal tract influences our visceral perception, and suggest new approaches for the treatment of abdominal pain and irritable bowel syndrome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Changing dynamics of the drug overdose epidemic in the United States from 1979 through 2016

            Better understanding of the dynamics of the current U.S. overdose epidemic may aid in the development of more effective prevention and control strategies. We analyzed records of 599,255 deaths from 1979 through 2016 from the National Vital Statistics System in which accidental drug poisoning was identified as the main cause of death. By examining all available data on accidental poisoning deaths back to 1979 and showing that the overall 38-year curve is exponential, we provide evidence that the current wave of opioid overdose deaths (due to prescription opioids, heroin, and fentanyl) may just be the latest manifestation of a more fundamental longer-term process. The 38+ year smooth exponential curve of total U.S. annual accidental drug poisoning deaths is a composite of multiple distinctive subepidemics of different drugs (primarily prescription opioids, heroin, methadone, synthetic opioids, cocaine, and methamphetamine), each with its own specific demographic and geographic characteristics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease

              It has previously been shown that the consumption of probiotics may have beneficial effects not only on peripheral tissues but also on the central nervous system and behavior via the microbiota–gut–brain axis, raising the possibility that treatment with probiotics could be an effective therapeutic strategy for managing neurodegenerative disorders. In this study, we investigated the effects of oral administration of Bifidobacterium breve strain A1 (B. breve A1) on behavior and physiological processes in Alzheimer’s disease (AD) model mice. We found that administration of B. breve A1 to AD mice reversed the impairment of alternation behavior in a Y maze test and the reduced latency time in a passive avoidance test, indicating that it prevented cognitive dysfunction. We also demonstrated that non-viable components of the bacterium or its metabolite acetate partially ameliorated the cognitive decline observed in AD mice. Gene profiling analysis revealed that the consumption of B. breve A1 suppressed the hippocampal expressions of inflammation and immune-reactive genes that are induced by amyloid-β. Together, these findings suggest that B. breve A1 has therapeutic potential for preventing cognitive impairment in AD.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                July 02 2019
                July 02 2019
                July 02 2019
                June 17 2019
                : 116
                : 27
                : 13523-13532
                Article
                10.1073/pnas.1901182116
                6613141
                31209039
                103abc85-3106-4175-a82a-acf07467fa73
                © 2019

                Free to read

                https://www.pnas.org/site/aboutpnas/licenses.xhtml

                History

                Comments

                Comment on this article