396
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      VDAC1: from structure to cancer therapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here, we review current evidence pointing to the function of VDAC1 in cell life and death, and highlight these functions in relation to cancer. Found at the outer mitochondrial membrane, VDAC1 assumes a crucial position in the cell, controlling the metabolic cross-talk between mitochondria and the rest of the cell. Moreover, its location at the boundary between the mitochondria and the cytosol enables VDAC1 to interact with proteins that mediate and regulate the integration of mitochondrial functions with other cellular activities. As a metabolite transporter, VDAC1 contributes to the metabolic phenotype of cancer cells. This is reflected by VDAC1 over-expression in many cancer types, and by inhibition of tumor development upon silencing VDAC1 expression. Along with regulating cellular energy production and metabolism, VDAC1 is also a key protein in mitochondria-mediated apoptosis, participating in the release of apoptotic proteins and interacting with anti-apoptotic proteins. The involvement of VDAC1 in the release of apoptotic proteins located in the inter-membranal space is discussed, as is VDAC1 oligomerization as an important step in apoptosis induction. VDAC also serves as an anchor point for mitochondria-interacting proteins, some of which are also highly expressed in many cancers, such as hexokinase (HK), Bcl2, and Bcl-xL. By binding to VDAC, HK provides both metabolic benefit and apoptosis-suppressive capacity that offers the cell a proliferative advantage and increases its resistance to chemotherapy. VDAC1-based peptides that bind specifically to HK, Bcl2, or Bcl-xL abolished the cell’s abilities to bypass the apoptotic pathway. Moreover, these peptides promote cell death in a panel of genetically characterized cell lines derived from different human cancers. These and other functions point to VDAC1 as a rational target for the development of a new generation of therapeutics.

          Related collections

          Most cited references369

          • Record: found
          • Abstract: found
          • Article: not found

          RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels.

          Therapeutics that discriminate between the genetic makeup of normal cells and tumour cells are valuable for treating and understanding cancer. Small molecules with oncogene-selective lethality may reveal novel functions of oncoproteins and enable the creation of more selective drugs. Here we describe the mechanism of action of the selective anti-tumour agent erastin, involving the RAS-RAF-MEK signalling pathway functioning in cell proliferation, differentiation and survival. Erastin exhibits greater lethality in human tumour cells harbouring mutations in the oncogenes HRAS, KRAS or BRAF. Using affinity purification and mass spectrometry, we discovered that erastin acts through mitochondrial voltage-dependent anion channels (VDACs)--a novel target for anti-cancer drugs. We show that erastin treatment of cells harbouring oncogenic RAS causes the appearance of oxidative species and subsequent death through an oxidative, non-apoptotic mechanism. RNA-interference-mediated knockdown of VDAC2 or VDAC3 caused resistance to erastin, implicating these two VDAC isoforms in the mechanism of action of erastin. Moreover, using purified mitochondria expressing a single VDAC isoform, we found that erastin alters the permeability of the outer mitochondrial membrane. Finally, using a radiolabelled analogue and a filter-binding assay, we show that erastin binds directly to VDAC2. These results demonstrate that ligands to VDAC proteins can induce non-apoptotic cell death selectively in some tumour cells harbouring activating mutations in the RAS-RAF-MEK pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.

            Acetylation of proteins on lysine residues is a dynamic posttranslational modification that is known to play a key role in regulating transcription and other DNA-dependent nuclear processes. However, the extent of this modification in diverse cellular proteins remains largely unknown, presenting a major bottleneck for lysine-acetylation biology. Here we report the first proteomic survey of this modification, identifying 388 acetylation sites in 195 proteins among proteins derived from HeLa cells and mouse liver mitochondria. In addition to regulators of chromatin-based cellular processes, nonnuclear localized proteins with diverse functions were identified. Most strikingly, acetyllysine was found in more than 20% of mitochondrial proteins, including many longevity regulators and metabolism enzymes. Our study reveals previously unappreciated roles for lysine acetylation in the regulation of diverse cellular pathways outside of the nucleus. The combined data sets offer a rich source for further characterization of the contribution of this modification to cellular physiology and human diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria.

              Mechanisms that regulate cellular metabolism are a fundamental requirement of all cells. Most eukaryotic cells rely on aerobic mitochondrial metabolism to generate ATP. Nevertheless, regulation of mitochondrial activity is incompletely understood. Here we identified an unexpected and essential role for constitutive InsP(3)R-mediated Ca(2+) release in maintaining cellular bioenergetics. Macroautophagy provides eukaryotes with an adaptive response to nutrient deprivation that prolongs survival. Constitutive InsP(3)R Ca(2+) signaling is required for macroautophagy suppression in cells in nutrient-replete media. In its absence, cells become metabolically compromised due to diminished mitochondrial Ca(2+) uptake. Mitochondrial uptake of InsP(3)R-released Ca(2+) is fundamentally required to provide optimal bioenergetics by providing sufficient reducing equivalents to support oxidative phosphorylation. Absence of this Ca(2+) transfer results in enhanced phosphorylation of pyruvate dehydrogenase and activation of AMPK, which activates prosurvival macroautophagy. Thus, constitutive InsP(3)R Ca(2+) release to mitochondria is an essential cellular process that is required for efficient mitochondrial respiration and maintenance of normal cell bioenergetics. Copyright 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                29 November 2012
                2012
                : 2
                : 164
                Affiliations
                [1] 1Department of Life Sciences, Ben-Gurion University of the Negev Beer-Sheva, Israel
                [2] 2The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer-Sheva, Israel
                Author notes

                Edited by: Catherine Brenner, Institut National de la Santé et de la Recherche Médicale - University of Paris Sud, France

                Reviewed by: Vito De Pinto, University of Catania, Italy; Cécile Martel, Montreal Heart Institute, Canada

                *Correspondence: Varda Shoshan-Barmatz, Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel. e-mail: vardasb@ 123456bgu.ac.il .

                This article was submitted to Frontiers in Molecular and Cellular Oncology, a specialty of Frontiers in Oncology.

                Article
                10.3389/fonc.2012.00164
                3516065
                23233904
                1042b92d-ab8a-4a7f-af8d-6e7265981936
                Copyright © Shoshan-Barmatz and Mizrachi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 29 July 2012
                : 24 October 2012
                Page count
                Figures: 7, Tables: 2, Equations: 0, References: 443, Pages: 34, Words: 0
                Categories
                Oncology
                Review Article

                Oncology & Radiotherapy
                cancer metabolism,mitochondrial porin,apoptosis,hexokinase,anti-apoptotic bcl-2,vdac protein

                Comments

                Comment on this article