25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sarcospan: a small protein with large potential for Duchenne muscular dystrophy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purification of the proteins associated with dystrophin, the gene product responsible for Duchenne muscular dystrophy, led to the discovery of the dystrophin-glycoprotein complex. Sarcospan, a 25-kDa transmembrane protein, was the last component to be identified and its function in skeletal muscle has been elusive. This review will focus on progress over the last decade revealing that sarcospan is an important regulator of muscle cell adhesion, strength, and regeneration. Investigations using several transgenic mouse models demonstrate that overexpression of sarcospan in the mouse model for Duchenne muscular dystrophy ameliorates pathology and restores muscle cell binding to laminin. Sarcospan improves cell surface expression of the dystrophin- and utrophin-glycoprotein complexes as well as α7β1 integrin, which are the three major laminin-binding complexes in muscle. Utrophin and α7β1 integrin compensate for the loss of dystrophin and the finding that sarcospan increases their abundance at the extra-synaptic sarcolemma supports the use of sarcospan as a therapeutic target. Newly discovered phenotypes in sarcospan-deficient mice, including a reduction in specific force output and increased drop in force in the diaphragm muscle, result from decreased utrophin and dystrophin expression and further reveal sarcospan’s role in determining abundance of these complexes. Dystrophin protein levels and the specific force output of the diaphragm muscle are further reduced upon genetic removal of α7 integrin (Itga7) in SSPN-deficient mice, demonstrating that interactions between integrin and sarcospan are critical for maintenance of the dystrophin-glycoprotein complex and force production of the diaphragm muscle. Sarcospan is a major regulator of Akt signaling pathways and sarcospan-deficiency significantly impairs muscle regeneration, a process that is dependent on Akt activation. Intriguingly, sarcospan regulates glycosylation of a specific subpopulation of α-dystroglycan, the laminin-binding receptor associated with dystrophin and utrophin, localized to the neuromuscular junction. Understanding the basic mechanisms responsible for assembly and trafficking of the dystrophin- and utrophin-glycoprotein complexes to the cell surface is lacking and recent studies suggest that sarcospan plays a role in these essential processes.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix.

          The primary sequence of two components of the dystrophin-glycoprotein complex has been established by complementary, DNA cloning. The transmembrane 43K and extracellular 156K dystrophin-associated glycoproteins (DAGs) are encoded by a single messenger RNA and the extracellular 156K DAG binds laminin. Thus, the 156K DAG is a new laminin-binding glycoprotein which may provide a linkage between the sarcolemma and extracellular matrix. These results support the hypothesis that the dramatic reduction in the 156K DAG in Duchenne muscular dystrophy leads to a loss of a linkage between the sarcolemma and extracellular matrix and that this may render muscle fibres more susceptible to necrosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Expression of full-length utrophin prevents muscular dystrophy in mdx mice.

            Duchenne muscular dystrophy (DMD) is a lethal, progressive muscle wasting disease caused by a loss of sarcolemmal bound dystrophin, which results in the death of the muscle fiber leading to the gradual depletion of skeletal muscle. The molecular structure of dystrophin is very similar to that of the related protein utrophin. Utrophin is found in all tissues and is confined to the neuromuscular and myotendinous junctions in mature muscle. Sarcolemmal localization of a truncated utrophin transgene in the dystrophin-deficient mdx mouse significantly improves the dystrophic muscle phenotype. Therefore, up-regulation of utrophin by drug therapy is a plausible therapeutic approach in the treatment of DMD. Here we demonstrate that expression of full-length utrophin in mdx mice prevents the development of muscular dystrophy. We assessed muscle morphology, fiber regeneration and mechanical properties (force development and resistance to stretch) of mdx and transgenic mdx skeletal and diaphragm muscle. The utrophin levels required in muscle are significantly less than the normal endogenous utrophin levels seen in lung and kidney, and we provide evidence that the pathology depends on the amount of utrophin expression. These results also have important implications for DMD therapies in which utrophin replacement is achieved by delivery using exogenous vectors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Association of dystrophin and an integral membrane glycoprotein.

              Duchenne muscular dystrophy (DMD) is caused by a defective gene found on the X-chromosome. Dystrophin is encoded by the DMD gene and represents about 0.002% of total muscle protein. Immunochemical studies have shown that dystrophin is localized to the sarcolemma in normal muscle but is absent in muscle from DMD patients. Many features of the predicted primary structure of dystrophin are shared with membrane cytoskeletal proteins, but the precise function of dystrophin in muscle is unknown. Here we report the first isolation of dystrophin from digitonin-solubilized skeletal muscle membranes using wheat germ agglutinin (WGA)-Sepharose. We find that dystrophin is not a glycoprotein but binds to WGA-Sepharose because of its tight association with a WGA-binding glycoprotein. The association of dystrophin with this glycoprotein is disrupted by agents that dissociate cytoskeletal proteins from membranes. We conclude that dystrophin is linked to an integral membrane glycoprotein in the sarcolemma. Our results indicate that the function of dystrophin could be to link this glycoprotein to the underlying cytoskeleton and thus help either to preserve membrane stability or to keep the glycoprotein non-uniformly distributed in the sarcolemma.
                Bookmark

                Author and article information

                Contributors
                Journal
                Skelet Muscle
                Skelet Muscle
                Skeletal Muscle
                BioMed Central
                2044-5040
                2013
                3 January 2013
                : 3
                : 1
                Affiliations
                [1 ]Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
                [2 ]Center for Duchenne Muscular Dystrophy, University of California Los Angeles, Los Angeles, CA, 90095, USA
                [3 ]Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
                Article
                2044-5040-3-1
                10.1186/2044-5040-3-1
                3599653
                23282144
                10511c7c-9cb6-4b70-bef9-7e6906535c03
                Copyright ©2013 Marshall and Watson; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 September 2012
                : 27 November 2012
                Categories
                Review

                Rheumatology
                akt,cell adhesion,duchenne,dystrophin,integrin,laminin-binding,mdx,muscular dystrophy,neuromuscular junction,regeneration,sarcolemma,sarcospan,utrophin

                Comments

                Comment on this article