10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-125a-5p modulates human cervical carcinoma proliferation and migration by targeting ABL2

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In this study, we intended to understand the regulatory mechanisms of microRNA-125a-5p (miR-125a-5p) in human cervical carcinoma.

          Methods

          The gene expressions of miR-125a-5p in seven cervical carcinoma cell lines and 12 human cervical carcinoma samples were evaluated by quantitative real-time reverse transcription polymerase chain reaction. Ca-Ski and HeLa cells were transduced with lentivirus carrying miR-125a-5p mimics, and the effects of lentivirus-induced miR-125a-5p upregulation on cervical carcinoma proliferation and migration were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and transwell assays, respectively. In additional, HeLa cells were inoculated into null mice to evaluate the effect of miR-125a-5p upregulation on in vivo cervical carcinoma growth. The direct regulation of miR-125a-5p on its target gene, ABL proto-oncogene 2 (ABL2), in cervical carcinoma was evaluated by quantitative real-time reverse transcription polymerase chain reaction, Western blotting and luciferase reporter assays, respectively. ABL2 was then downregulated by small interfering RNA to examine its effect on cervical carcinoma proliferation and migration.

          Results

          miR-125a-5p was downregulated in both cervical carcinoma cell lines and human cervical carcinomas. In Ca-Ski and HeLa cells, lentivirus-mediated miR-125a-5p upregulation inhibited cancer proliferation and migration in vitro and cervical carcinoma transplantation in vivo. ABL2 was shown to be directly targeted by miR-125a-5p. In cervical carcinoma, ABL2 gene and protein levels were both downregulated by miR-125a-5p. Small interfering RNA-mediated ABL2 downregulation also had tumor-suppressive effects on cervical carcinoma proliferation and migration.

          Conclusion

          The molecular pathway of miR-125a-5p/ABL2 plays an important role in human cervical carcinoma. Targeting miR-125a-5p/ABL2 pathway may provide a new treatment strategy for patients with cervical carcinoma.

          Related collections

          Most cited references 14

          • Record: found
          • Abstract: found
          • Article: not found

          Aberrant Expression of Oncogenic and Tumor-Suppressive MicroRNAs in Cervical Cancer Is Required for Cancer Cell Growth

          MicroRNAs (miRNAs) play important roles in cancer development. By cloning and sequencing of a HPV16+ CaSki cell small RNA library, we isolated 174 miRNAs (including the novel miR-193c) which could be grouped into 46 different miRNA species, with miR-21, miR-24, miR-27a, and miR-205 being most abundant. We chose for further study 10 miRNAs according to their cloning frequency and associated their levels in 10 cervical cancer- or cervical intraepithelial neoplasia-derived cell lines. No correlation was observed between their expression with the presence or absence of an integrated or episomal HPV genome. All cell lines examined contained no detectable miR-143 and miR-145. HPV-infected cell lines expressed a different set of miRNAs when grown in organotypic raft cultured as compared to monolayer cell culture, including expression of miR-143 and miR-145. This suggests a correlation between miRNA expression and tissue differentiation. Using miRNA array analyses for age-matched normal cervix and cervical cancer tissues, in combination with northern blot verification, we identified significantly deregulated miRNAs in cervical cancer tissues, with miR-126, miR-143, and miR-145 downregulation and miR-15b, miR-16, miR-146a, and miR-155 upregulation. Functional studies showed that both miR-143 and miR-145 are suppressive to cell growth. When introduced into cell lines, miR-146a was found to promote cell proliferation. Collectively, our data indicate that downregulation of miR-143 and miR-145 and upregulation of miR-146a play a role in cervical carcinogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Diverse functions of miR-125 family in different cell contexts

            MicroRNAs (miRNAs) are emerging as a novel class of non-coding RNA molecules that regulate gene expression at a post-transcriptional level. More than 1000 miRNAs have been identified in human cells to date, and they are reported to play important roles in normal cell homeostasis, cell metastasis and disease pathogensis and progression. MiR-125, which is a highly conserved miRNA throughout diverse species from nematode to humans, consists of three homologs hsa-miR-125a, hsa-miR-125b-1 and hsa-miR-125-2. Members of this family have been validated to be down-regulated, exhibiting its disease-suppressing properties in many different types of diseases, while they also have disease-promoting functions in certain contexts. MiR-125 targets a number of genes such as transcription factors, matrix-metalloprotease, members of Bcl-2 family and others, aberrance of which may lead to abnormal proliferation, metastasis and invasion of cells, even carcinomas. Furthermore, miR-125 plays a crucial role in immunological host defense, especially in response to bacterial or viral infections. In this review, we summarize the implication of miR-125 family in disease suppression and promotion, focusing on carcinoma and host immune responses. We also discussed the potential of this miRNA family as promising biomarkers and therapeutic targets for different diseases in future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b.

              Sirtuins are nicotinamide adenine dinucleotide oxidized form (NAD(+) )-dependent deacetylases and function in cellular metabolism, stress resistance, and aging. For sirtuin7 (SIRT7), a role in ribosomal gene transcription is proposed, but its function in cancer has been unclear. In this study we show that SIRT7 expression was up-regulated in a large cohort of human hepatocellular carcinoma (HCC) patients. SIRT7 knockdown influenced the cell cycle and caused a significant increase of liver cancer cells to remain in the G1 /S phase and to suppress growth. This treatment restored p21(WAF1/Cip1) , induced Beclin-1, and repressed cyclin D1. In addition, sustained suppression of SIRT7 reduced the in vivo tumor growth rate in a mouse xenograft model. To explore mechanisms in SIRT7 regulation, microRNA (miRNA) profiling was carried out. This identified five significantly down-regulated miRNAs in HCC. Bioinformatics analysis of target sites and ectopic expression in HCC cells showed that miR-125a-5p and miR-125b suppressed SIRT7 and cyclin D1 expression and induced p21(WAF1/Cip1) -dependent G1 cell cycle arrest. Furthermore, treatment of HCC cells with 5-aza-2'-deoxycytidine or ectopic expression of wildtype but not mutated p53 restored miR-125a-5p and miR-125b expression and inhibited tumor cell growth, suggesting their regulation by promoter methylation and p53 activity. To show the clinical significance of these findings, mutations in the DNA binding domain of p53 and promoter methylation of miR-125b were investigated. Four out of nine patients with induced SIRT7 carried mutations in the p53 gene and one patient showed hypermethylation of the miR-125b promoter region. Our findings suggest the oncogenic potential of SIRT7 in hepatocarcinogenesis. A regulatory loop is proposed whereby SIRT7 inhibits transcriptional activation of p21(WAF1/Cip1) by way of repression of miR-125a-5p and miR-125b. This makes SIRT7 a promising target in cancer therapy. (HEPATOLOGY 2013). Copyright © 2012 American Association for the Study of Liver Diseases.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2016
                24 December 2015
                : 10
                : 71-79
                Affiliations
                [1 ]Department of Obstetrics and Gynecology, Central South University, Changsha, People’s Republic of China
                [2 ]Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
                Author notes
                Correspondence: Min Xue, Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410013, People’s Republic of China, Tel +867 318 861 8821, Email minxue56@ 123456aol.com
                Article
                dddt-10-071
                10.2147/DDDT.S93104
                4699546
                © 2016 Qin et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article