48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Specific deletion of Cdc42 does not affect meiotic spindle organization/migration and homologous chromosome segregation but disrupts polarity establishment and cytokinesis in mouse oocytes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oocyte-specific deletion of Cdc42 has little effect on meiotic spindle organization and migration to the cortex but inhibits polar body emission, although homologous chromosome segregation occurs. The failure of cytokinesis is due to loss of polarized Arp2/3 accumulation and actin cap formation, and thus the defective contract ring.

          Abstract

          Mammalian oocyte maturation is distinguished by highly asymmetric meiotic divisions during which a haploid female gamete is produced and almost all the cytoplasm is maintained in the egg for embryo development. Actin-dependent meiosis I spindle positioning to the cortex induces the formation of a polarized actin cap and oocyte polarity, and it determines asymmetric divisions resulting in two polar bodies. Here we investigate the functions of Cdc42 in oocyte meiotic maturation by oocyte-specific deletion of Cdc42 through Cre-loxP conditional knockout technology. We find that Cdc42 deletion causes female infertility in mice. Cdc42 deletion has little effect on meiotic spindle organization and migration to the cortex but inhibits polar body emission, although homologous chromosome segregation occurs. The failure of cytokinesis is due to the loss of polarized Arp2/3 accumulation and actin cap formation; thus the defective contract ring. In addition, we correlate active Cdc42 dynamics with its function during polar body emission and find a relationship between Cdc42 and polarity, as well as polar body emission, in mouse oocytes.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Concentric zones of active RhoA and Cdc42 around single cell wounds

          Rho GTPases control many cytoskeleton-dependent processes, but how they regulate spatially distinct features of cytoskeletal function within a single cell is poorly understood. Here, we studied active RhoA and Cdc42 in wounded Xenopus oocytes, which assemble and close a dynamic ring of actin filaments (F-actin) and myosin-2 around wound sites. RhoA and Cdc42 are rapidly activated around wound sites in a calcium-dependent manner and segregate into distinct, concentric zones around the wound, with active Cdc42 in the approximate middle of the F-actin array and active RhoA on the interior of the array. These zones form before F-actin accumulation, and then move in concert with the closing array. Microtubules and F-actin are required for normal zone organization and dynamics, as is crosstalk between RhoA and Cdc42. Each of the zones makes distinct contributions to the organization and function of the actomyosin wound array. We propose that similar rho activity zones control related processes such as cytokinesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human Ect2 Is an Exchange Factor for Rho Gtpases, Phosphorylated in G2/M Phases, and Involved in Cytokinesis

            Animal cells divide into two daughter cells by the formation of an actomyosin-based contractile ring through a process called cytokinesis. Although many of the structural elements of cytokinesis have been identified, little is known about the signaling pathways and molecular mechanisms underlying this process. Here we show that the human ECT2 is involved in the regulation of cytokinesis. ECT2 catalyzes guanine nucleotide exchange on the small GTPases, RhoA, Rac1, and Cdc42. ECT2 is phosphorylated during G2 and M phases, and phosphorylation is required for its exchange activity. Unlike other known guanine nucleotide exchange factors for Rho GTPases, ECT2 exhibits nuclear localization in interphase, spreads throughout the cytoplasm in prometaphase, and is condensed in the midbody during cytokinesis. Expression of an ECT2 derivative, containing the NH2-terminal domain required for the midbody localization but lacking the COOH-terminal catalytic domain, strongly inhibits cytokinesis. Moreover, microinjection of affinity-purified anti-ECT2 antibody into interphase cells also inhibits cytokinesis. These results suggest that ECT2 is an important link between the cell cycle machinery and Rho signaling pathways involved in the regulation of cell division.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments.

              Female meiosis in higher organisms consists of highly asymmetric divisions, which retain most maternal stores in the oocyte for embryo development. Asymmetric partitioning of the cytoplasm results from the spindle's "off-center" positioning, which, in mouse oocytes, depends mainly on actin filaments [1, 2]. This is a unique situation compared to most systems, in which spindle positioning requires interactions between astral microtubules and cortical actin filaments [3]. Formin 2, a straight-actin-filament nucleator, is required for the first meiotic spindle migration to the cortex and cytokinesis in mouse oocytes [4, 5]. Although the requirement for actin filaments in the control of spindle positioning is well established in this model, no one has been able to detect them in the cytoplasm [6]. Through the expression of an F-actin-specific probe and live confocal microscopy, we show the presence of a cytoplasmic actin meshwork, organized by Formin 2, that controls spindle migration. In late meiosis I, these filaments organize into a spindle-like F-actin structure, which is connected to the cortex. At anaphase, global reorganization of this meshwork allows polar-body extrusion. In addition, using actin-YFP, our FRAP analysis confirms the presence of a highly dynamic cytoplasmic actin meshwork that is tightly regulated in time and space.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                Mol. Biol. Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                15 December 2013
                : 24
                : 24
                : 3832-3841
                Affiliations
                [1] aState Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
                [2] bUniversity of Chinese Academy of Sciences, Beijing 100049, China
                [3] cMolecular Pathology Section, Department of Biomedical Sciences, Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
                [4] dDepartment of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211
                Carnegie Institution
                Author notes
                1Address correspondence to: Qing-Yuan Sun ( sunqy@ 123456ioz.ac.cn ).
                Article
                E13-03-0123
                10.1091/mbc.E13-03-0123
                3861080
                24131996
                1062ff34-432d-40ac-9100-de788ed4aa2b
                © 2013 Wang et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology.

                History
                : 06 March 2013
                : 04 October 2013
                : 09 October 2013
                Categories
                Articles
                Cell Cycle

                Molecular biology
                Molecular biology

                Comments

                Comment on this article