24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Quantum and isotope effects in lithium metal

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references55

          • Record: found
          • Abstract: not found
          • Article: not found

          Generalized Gradient Approximation Made Simple.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials

            Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). Quantum ESPRESSO stands for "opEn Source Package for Research in Electronic Structure, Simulation, and Optimization". It is freely available to researchers around the world under the terms of the GNU General Public License. Quantum ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively-parallel architectures, and a great effort being devoted to user friendliness. Quantum ESPRESSO is evolving towards a distribution of independent and inter-operable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Predicted novel high-pressure phases of lithium.

              Under high pressure, "simple" lithium (Li) exhibits complex structural behavior, and even experiences an unusual metal-to-semiconductor transition, leading to topics of interest in the structural polymorphs of dense Li. We here report two unexpected orthorhombic high-pressure structures Aba2-40 (40 atoms/cell, stable at 60-80 GPa) and Cmca-56 (56 atoms/cell, stable at 185-269 GPa), by using a newly developed particle swarm optimization technique on crystal structure prediction. The Aba2-40 having complex 4- and 8-atom layers stacked along the b axis is a semiconductor with a pronounced band gap >0.8 eV at 70 GPa originating from the core expulsion and localization of valence electrons in the voids of a crystal. We predict that a local trigonal planar structural motif adopted by Cmca-56 exists in a wide pressure range of 85-434 GPa, favorable for the weak metallicity.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                June 22 2017
                June 23 2017
                : 356
                : 6344
                : 1254-1259
                Article
                10.1126/science.aal4886
                28642431
                1068902b-357c-44c8-a226-834c52468ba6
                © 2017

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article