38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Auxin influx inhibitors 1-NOA, 2-NOA, and CHPAA interfere with membrane dynamics in tobacco cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The phytohormone auxin is transported through the plant body either via vascular pathways or from cell to cell by specialized polar transport machinery. This machinery consists of a balanced system of passive diffusion combined with the activities of auxin influx and efflux carriers. Synthetic auxins that differ in the mechanisms of their transport across the plasma membrane together with polar auxin transport inhibitors have been used in many studies on particular auxin carriers and their role in plant development. However, the exact mechanism of action of auxin efflux and influx inhibitors has not been fully elucidated. In this report, the mechanism of action of the auxin influx inhibitors (1-naphthoxyacetic acid (1-NOA), 2-naphthoxyacetic acid (2-NOA), and 3-chloro-4-hydroxyphenylacetic acid (CHPAA)) is examined by direct measurements of auxin accumulation, cellular phenotypic analysis, as well as by localization studies of Arabidopsis thaliana L. auxin carriers heterologously expressed in Nicotiana tabacum L., cv. Bright Yellow cell suspensions. The mode of action of 1-NOA, 2-NOA, and CHPAA has been shown to be linked with the dynamics of the plasma membrane. The most potent inhibitor, 1-NOA, blocked the activities of both auxin influx and efflux carriers, whereas 2-NOA and CHPAA at the same concentration preferentially inhibited auxin influx. The results suggest that these, previously unknown, activities of putative auxin influx inhibitors regulate overall auxin transport across the plasma membrane depending on the dynamics of particular membrane vesicles.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Local, efflux-dependent auxin gradients as a common module for plant organ formation.

          Plants, compared to animals, exhibit an amazing adaptability and plasticity in their development. This is largely dependent on the ability of plants to form new organs, such as lateral roots, leaves, and flowers during postembryonic development. Organ primordia develop from founder cell populations into organs by coordinated cell division and differentiation. Here, we show that organ formation in Arabidopsis involves dynamic gradients of the signaling molecule auxin with maxima at the primordia tips. These gradients are mediated by cellular efflux requiring asymmetrically localized PIN proteins, which represent a functionally redundant network for auxin distribution in both aerial and underground organs. PIN1 polar localization undergoes a dynamic rearrangement, which correlates with establishment of auxin gradients and primordium development. Our results suggest that PIN-dependent, local auxin gradients represent a common module for formation of all plant organs, regardless of their mature morphology or developmental origin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots.

            Local accumulation of the plant growth regulator auxin mediates pattern formation in Arabidopsis roots and influences outgrowth and development of lateral root- and shoot-derived primordia. However, it has remained unclear how auxin can simultaneously regulate patterning and organ outgrowth and how its distribution is stabilized in a primordium-specific manner. Here we show that five PIN genes collectively control auxin distribution to regulate cell division and cell expansion in the primary root. Furthermore, the joint action of these genes has an important role in pattern formation by focusing the auxin maximum and restricting the expression domain of PLETHORA (PLT) genes, major determinants for root stem cell specification. In turn, PLT genes are required for PIN gene transcription to stabilize the auxin maximum at the distal root tip. Our data reveal an interaction network of auxin transport facilitators and root fate determinants that control patterning and growth of the root primordium.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis.

              Long-standing models propose that plant growth responses to light or gravity are mediated by asymmetric distribution of the phytohormone auxin. Physiological studies implicated a specific transport system that relocates auxin laterally, thereby effecting differential growth; however, neither the molecular components of this system nor the cellular mechanism of auxin redistribution on light or gravity perception have been identified. Here, we show that auxin accumulates asymmetrically during differential growth in an efflux-dependent manner. Mutations in the Arabidopsis gene PIN3, a regulator of auxin efflux, alter differential growth. PIN3 is expressed in gravity-sensing tissues, with PIN3 protein accumulating predominantly at the lateral cell surface. PIN3 localizes to the plasma membrane and to vesicles that cycle in an actin-dependent manner. In the root columella, PIN3 is positioned symmetrically at the plasma membrane but rapidly relocalizes laterally on gravity stimulation. Our data indicate that PIN3 is a component of the lateral auxin transport system regulating tropic growth. In addition, actin-dependent relocalization of PIN3 in response to gravity provides a mechanism for redirecting auxin flux to trigger asymmetric growth.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                jexbot
                exbotj
                Journal of Experimental Botany
                Oxford University Press
                0022-0957
                1460-2431
                August 2010
                01 July 2010
                01 July 2010
                : 61
                : 13
                : 3589-3598
                Affiliations
                [1 ]Institute of Experimental Botany, the Academy of Sciences of the Czech Republic, Rozvojová 263, CZ-165 02 Prague 6, Czech Republic
                [2 ]Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
                Author notes
                [* ]To whom correspondence should be addressed: E-mail: hoyerova@ 123456ueb.cas.cz
                Article
                10.1093/jxb/erq172
                2921198
                20595238
                106feec7-3674-4ed7-a7f8-dff2b1685a89
                © 2010 The Author(s).

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details)

                History
                : 26 February 2010
                : 26 April 2010
                : 25 May 2010
                Categories
                Research Papers

                Plant science & Botany
                tobacco by-2 cells,auxin efflux carrier,membrane dynamics,auxin transport,auxin influx carrier,auxin transport inhibitor

                Comments

                Comment on this article