46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Relationships Between Internal and External Measures of Training Load and Intensity in Team Sports: A Meta-Analysis

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Improved tests for a random effects meta-regression with a single covariate.

          The explanation of heterogeneity plays an important role in meta-analysis. The random effects meta-regression model allows the inclusion of trial-specific covariates which may explain a part of the heterogeneity. We examine the commonly used tests on the parameters in the random effects meta-regression with one covariate and propose some new test statistics based on an improved estimator of the variance of the parameter estimates. The approximation of the distribution of the newly proposed tests is based on some theoretical considerations. Moreover, the newly proposed tests can easily be extended to the case of more than one covariate. In a simulation study, we compare the tests with regard to their actual significance level and we consider the log relative risk as the parameter of interest. Our simulation study reflects the meta-analysis of the efficacy of a vaccine for the prevention of tuberculosis originally discussed in Berkey et al. The simulation study shows that the newly proposed tests are superior to the commonly used test in holding the nominal significance level. Copyright 2003 John Wiley & Sons, Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Monitoring Training Load to Understand Fatigue in Athletes

            Many athletes, coaches, and support staff are taking an increasingly scientific approach to both designing and monitoring training programs. Appropriate load monitoring can aid in determining whether an athlete is adapting to a training program and in minimizing the risk of developing non-functional overreaching, illness, and/or injury. In order to gain an understanding of the training load and its effect on the athlete, a number of potential markers are available for use. However, very few of these markers have strong scientific evidence supporting their use, and there is yet to be a single, definitive marker described in the literature. Research has investigated a number of external load quantifying and monitoring tools, such as power output measuring devices, time-motion analysis, as well as internal load unit measures, including perception of effort, heart rate, blood lactate, and training impulse. Dissociation between external and internal load units may reveal the state of fatigue of an athlete. Other monitoring tools used by high-performance programs include heart rate recovery, neuromuscular function, biochemical/hormonal/immunological assessments, questionnaires and diaries, psychomotor speed, and sleep quality and quantity. The monitoring approach taken with athletes may depend on whether the athlete is engaging in individual or team sport activity; however, the importance of individualization of load monitoring cannot be over emphasized. Detecting meaningful changes with scientific and statistical approaches can provide confidence and certainty when implementing change. Appropriate monitoring of training load can provide important information to athletes and coaches; however, monitoring systems should be intuitive, provide efficient data analysis and interpretation, and enable efficient reporting of simple, yet scientifically valid, feedback.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis.

              High-intensity interval training (HIT), in a variety of forms, is today one of the most effective means of improving cardiorespiratory and metabolic function and, in turn, the physical performance of athletes. HIT involves repeated short-to-long bouts of rather high-intensity exercise interspersed with recovery periods. For team and racquet sport players, the inclusion of sprints and all-out efforts into HIT programmes has also been shown to be an effective practice. It is believed that an optimal stimulus to elicit both maximal cardiovascular and peripheral adaptations is one where athletes spend at least several minutes per session in their 'red zone,' which generally means reaching at least 90% of their maximal oxygen uptake (VO2max). While use of HIT is not the only approach to improve physiological parameters and performance, there has been a growth in interest by the sport science community for characterizing training protocols that allow athletes to maintain long periods of time above 90% of VO2max (T@VO2max). In addition to T@VO2max, other physiological variables should also be considered to fully characterize the training stimulus when programming HIT, including cardiovascular work, anaerobic glycolytic energy contribution and acute neuromuscular load and musculoskeletal strain. Prescription for HIT consists of the manipulation of up to nine variables, which include the work interval intensity and duration, relief interval intensity and duration, exercise modality, number of repetitions, number of series, as well as the between-series recovery duration and intensity. The manipulation of any of these variables can affect the acute physiological responses to HIT. This article is Part I of a subsequent II-part review and will discuss the different aspects of HIT programming, from work/relief interval manipulation to the selection of exercise mode, using different examples of training cycles from different sports, with continued reference to T@VO2max and cardiovascular responses. Additional programming and periodization considerations will also be discussed with respect to other variables such as anaerobic glycolytic system contribution (as inferred from blood lactate accumulation), neuromuscular load and musculoskeletal strain (Part II).
                Bookmark

                Author and article information

                Journal
                Sports Medicine
                Sports Med
                Springer Nature
                0112-1642
                1179-2035
                March 2018
                December 29 2017
                : 48
                : 3
                : 641-658
                Article
                10.1007/s40279-017-0830-z
                29288436
                107920b4-ba2d-4ffa-88ef-7c9dce6b7466
                © 2017

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article