15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Breviscapine prevents downregulation of renal water and sodium transport proteins in response to unilateral ureteral obstruction

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective(s):

          Our recent report indicates that breviscapine play a protective role of the kidney by down-regulating transforming growth factor-β1(TGF-β1), α-smooth muscle actin (α-SMA) and alleviating interstitial fibrosis following unilateral ureteral obstruction (UUO). In this study, we investigate the effect of breviscapine on changes of renal water and sodium transport proteins in response to UUO.

          Materials and Methods:

          Male Sprague-Dawley rats were divided into 3 groups, sham group, UUO group and UUO treat with breviscapine. After 4, 7 and 14 days, histologic changes and interstitial collagen were determined microscopically following hematoxylin and eosin (H&E) and Masson’s trichrome staining. The expression of Aquaporins (AQP-2) and γ-epithelial sodium channel (γ-ENaC) were investigated using immunohistochemistry and Western blot in each group.

          Results:

          Breviscapine treatment decrease the tubular injury index and the degree of interstitial collagen deposition significantly compared with the UUO group (P<0.05). Breviscapine treatment also significantly reduced downregulation of AQP2 and γ-ENaC compared to those subjected to the same time course of obstruction in UUO group (P<0.05).

          Conclusion:

          These results demonstrate that breviscapine could prevent downregulation of renal water and sodium transport proteins in response to UUO so as to protect obstructed kidney.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits.

          The amiloride-sensitive epithelial sodium channel constitutes the rate-limiting step for sodium reabsorption in epithelial cells that line the distal part of the renal tubule, the distal colon, the duct of several exocrine glands, and the lung. The activity of this channel is upregulated by vasopressin and aldosterone, hormones involved in the maintenance of sodium balance, blood volume and blood pressure. We have identified the primary structure of the alpha-subunit of the rat epithelial sodium channel by expression cloning in Xenopus laevis oocytes. An identical subunit has recently been reported. Here we identify two other subunits (beta and gamma) by functional complementation of the alpha-subunit of the rat epithelial Na+ channel. The ion-selective permeability, the gating properties and the pharmacological profile of the channel formed by coexpressing the three subunits in oocytes are similar to that of the native channel.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heme oxygenase-1 and acute kidney injury.

            Heme oxygenase activity, possessed by an inducible heme oxygenase-1 (HO-1) and a constitutive isoform (HO-2), catalyzes the conversion of heme to biliverdin, liberates iron, and generates carbon monoxide. First shown in acute kidney injury (AKI), HO-1 is now recognized as a protectant against diverse insults in assorted tissues. This review summarizes recent contributions to the field of HO-1 and AKI.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat.

              AQP-CD is a vasopressin-regulated water channel expressed exclusively in the renal collecting duct. We have previously shown that AQP-CD is present in the apical plasma membrane and subapical vesicles of collecting duct cells, consistent with membrane-shuttling mechanisms that have been proposed to explain the short-term action of [Arg8] vasopressin (AVP) to regulate apical water permeability. We propose here that AVP may also have long-term actions on the collecting duct to regulate the expression of the AQP-CD water channel. We used immunoblotting, immunohistochemistry, and in vitro perfusion of renal tubules to investigate water channel regulation in collecting ducts of diabetes insipidus (Brattleboro) rats treated with a 5-day infusion of AVP or vehicle. Immunoblotting and immunohistochemistry demonstrated that collecting ducts of vehicle-infused Brattleboro rats had markedly reduced expression of AQP-CD relative to normal rats. In response to AVP infusion there was a nearly 3-fold increase in AQP-CD expression as detected by immunoblotting. Immunocytochemistry demonstrated that the increased expression was predominantly in the apical plasma membrane and subapical vesicles of collecting duct cells. Inner medullary collecting ducts of AVP-infused Brattleboro rats displayed a 3-fold increase in osmotic water permeability relative to vehicle-infused controls, in parallel with the change in AQP-CD expression. Based on these findings, we conclude that (i) long-term infusion of AVP, acting either directly or indirectly, regulates expression of the AQP-CD water channel and (ii) AQP-CD is the predominant AVP-regulated water channel.
                Bookmark

                Author and article information

                Journal
                Iran J Basic Med Sci
                Iran J Basic Med Sci
                Iranian Journal of Basic Medical Sciences
                Mashhad University of Medical Sciences (Iran )
                2008-3866
                2008-3874
                May 2016
                : 19
                : 5
                : 573-578
                Affiliations
                [1 ]Department of Intensive Care Unit, The First Affiliate Hospital of Wenzhou Medical University, China
                [2 ]Department of Transplantation Center, The First Affiliate Hospital of Wenzhou Medical University, China
                [3 ]Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, China
                Author notes
                [* ] Corresponding author: Zhang Yan. Department of Transplantation Center, The First Affiliate Hospital of Wenzhou Medical University, 1 Fuxuexiang, Wenzhou, Zhejiang, China. Tel: +86-577-55579478; email: biobabry@ 123456163.com
                Article
                IJBMS-19-573
                4923479
                27403265
                10813e74-e7f6-4fea-ae09-eb70cc0f7581
                Copyright: © Iranian Journal of Basic Medical Sciences

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 November 2015
                : 07 January 2016
                Categories
                Short Communication

                breviscapine,kidney,ureteral obstruction,water and sodium trans-,port proteins

                Comments

                Comment on this article