38
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Retinal horizontal cells lacking Rb1 sustain persistent DNA damage and survive as polyploid giant cells

      research-article
      , 1
      Molecular Biology of the Cell
      The American Society for Cell Biology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rb1 plays multiple roles in regulating key aspects of the cell cycle to ensure genomic integrity. Horizontal cells missing Rb1 have an elevated DNA content, sustain DNA damage, and persist as giant cells for several months.

          Abstract

          The retinoblastoma tumor susceptibility gene, Rb1, is a key regulator of the cell cycle, and mutations in this gene have been found in many human cancers. Prior studies showed that retina-specific knockout of Rb1 in the mouse results in the formation of abnormally large horizontal cells, but the development, fate, and genomic status of these cells remain unknown. In this study, we conditionally inactivate Rb1 in early retinal progenitors and show that the loss of Rb1 leads to the rapid degeneration of most retinal cells except horizontal cells, which persist as giant cells with aberrant centrosome content, DNA damage, and polyploidy/aneuploidy. We observed inappropriate cell cycle entry of Rb1-deficient horizontal cells during the first postnatal weeks, which dropped off abruptly by P30. Despite extensive DNA damage in Rb1-deficient horizontal cells, these cells can still enter mitosis. Adult Rb1-deficient horizontal cells display elevated DNA content (5 N–34 N) that varied continuously, suggesting the presence of aneuploidy. We also found evidence of supernumerary and disoriented centrosomes in a rare population of mitotic cells in the mutant retinas. Overall our data demonstrate that horizontal cells are a remarkably robust cell type and can survive for months despite extensive DNA damage and elevated genome content.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Pax6 is required for the multipotent state of retinal progenitor cells.

          The molecular mechanisms mediating the retinogenic potential of multipotent retinal progenitor cells (RPCs) are poorly defined. Prior to initiating retinogenesis, RPCs express a limited set of transcription factors implicated in the evolutionary ancient genetic network that initiates eye development. We elucidated the function of one of these factors, Pax6, in the RPCs of the intact developing eye by conditional gene targeting. Upon Pax6 inactivation, the potential of RPCs becomes entirely restricted to only one of the cell fates normally available to RPCs, resulting in the exclusive generation of amacrine interneurons. Our findings demonstrate furthermore that Pax6 directly controls the transcriptional activation of retinogenic bHLH factors that bias subsets of RPCs toward the different retinal cell fates, thereby mediating the full retinogenic potential of RPCs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Geminin, an inhibitor of DNA replication, is degraded during mitosis.

            We describe a novel 25 kDa protein, geminin, which inhibits DNA replication and is degraded during the mitotic phase of the cell cycle. Geminin has a destruction box sequence and is ubiquitinated anaphase-promoting complex (APC) in vitro. In synchronized HeLa cells, geminin is absent during G1 phase, accumulates during S, G2, and M phases, and disappears at the time of the metaphase-anaphase transition. Geminin inhibits DNA replication by preventing the incorporation of MCM complex into prereplication complex (pre-RC). We propose that geminin inhibits DNA replication during S, G2, and M phases and that geminin destruction at the metaphase-anaphase transition permits replication in the succeeding cell cycle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of an Rb mutation in the mouse.

              The retinoblastoma gene is mutated in several types of human cancer and is the best characterized of the tumour-suppressor genes. A mouse strain has been constructed in which one allele of Rb is disrupted. These heterozygous animals are not predisposed to retinoblastoma, but some display pituitary tumours arising from cells in which the wild-type Rb allele is absent. Embryos homozygous for the mutation die between days 14 and 15 of gestation, exhibiting neuronal cell death and defective erythropoiesis.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                Mol. Biol. Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                15 November 2012
                : 23
                : 22
                : 4362-4372
                Affiliations
                Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
                National Institutes of Health
                Author notes
                1Address correspondence to: Joseph C. Corbo ( jcorbo@ 123456wustl.edu ).
                Article
                E12-04-0293
                10.1091/mbc.E12-04-0293
                3496610
                23015754
                1083bc69-3144-44d8-9249-d054e47610f8
                © 2012 Donovan and Corbo. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell BD; are registered trademarks of The American Society of Cell Biology.

                History
                : 16 April 2012
                : 17 September 2012
                : 18 September 2012
                Categories
                Articles
                Cell Cycle

                Molecular biology
                Molecular biology

                Comments

                Comment on this article