13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Passive electroreception in aquatic mammals

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Passive electroreception is a sensory modality in many aquatic vertebrates, predominantly fishes. Using passive electroreception, the animal can detect and analyze electric fields in its environment. Most electric fields in the environment are of biogenic origin, often produced by prey items. These electric fields can be relatively strong and can be a highly valuable source of information for a predator, as underlined by the fact that electroreception has evolved multiple times independently. The only mammals that possess electroreception are the platypus (Ornithorhynchus anatinus) and the echidnas (Tachyglossidae) from the monotreme order, and, recently discovered, the Guiana dolphin (Sotalia guianensis) from the cetacean order. Here we review the morphology, function and origin of the electroreceptors in the two aquatic species, the platypus and the Guiana dolphin. The morphology shows certain similarities, also similar to ampullary electroreceptors in fishes, that provide cues for the search for electroreceptors in more vertebrate and invertebrate species. The function of these organs appears to be very similar. Both species search for prey animals in low-visibility conditions or while digging in the substrate, and sensory thresholds are within one order of magnitude. The electroreceptors in both species are innervated by the trigeminal nerve. The origin of the accessory structures, however, is completely different; electroreceptors in the platypus have developed from skin glands, in the Guiana dolphin, from the vibrissal system.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle-sinus complexes.

          This comparative study was conducted to provide a detailed, comprehensive description of the innervation to the follicle-sinus complex (F-SC) of mystacial vibrissae and to determine if interspecies variability in the innervation of the F-SCs may be related to differences in the structure or existence of barrels in the primary somatosensory (SI) cortex. Two silver techniques (Winkelmann on 100 micron-thick-frozen sections and Sevier-Munger on 8 micron-thick paraffin sections) were applied to comparable mystacial skin samples from adult hamsters, mice, rats, gerbils, rabbits, guinea pigs and cats. The basic structure and innervation of the F-SCs is the same in all species. Six distinct populations of sensory receptors are identified at consistent locations: Merkel endings in the epidermal rete ridge collar at the mouth of the follicle; circularly disposed presumptive lanceolate, Ruffini, and free nerve endings (FNE) in the inner conical body; longitudinal lanceolate endings in a dense palisade in the mesenchymal sheath at the level of the ring sinus; Merkel endings in the external root sheath at the level of the ring sinus; scattered corpuscular and FNEs (possibly lanceolate or Ruffini endings) in the cavernous sinus; and a few FNEs in the dermal papilla. In each F-SC, the first two locations are supplied by several superficial vibrissal nerves that arise from several small nerves that also innervate the skin between the vibrissae. These superficial nerves may innervate more than one F-SC. The next three locations are supplied by a single large deep vibrissal nerve that is derived directly from a row fascicle of the infraorbital nerve. Each deep nerve innervates a single F-SC. The source of the papilla innervation was not found. The ring sinus locations are consistently the most heavily innervated in all species. The number of axons in comparable deep vibrissal nerves is similar among the rodents, higher in the cat, and lower in the rabbit. Innervation of the inner conical body varies considerably, being dense in species that vigorously whisk their vibrissae (hamster, mouse, rat, and gerbil) and sparse or absent in species that minimally or never whisk (guinea pig, rabbit, and cat). Innervation to the cavernous sinus is sparse particularly in hamsters and gerbils. The innervation to the rete ridge is uniquely absent in the rabbit.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electroreception in the Guiana dolphin (Sotalia guianensis).

            Passive electroreception is a widespread sense in fishes and amphibians, but in mammals this sensory ability has previously only been shown in monotremes. While the electroreceptors in fish and amphibians evolved from mechanosensory lateral line organs, those of monotremes are based on cutaneous glands innervated by trigeminal nerves. Electroreceptors evolved from other structures or in other taxa were unknown to date. Here we show that the hairless vibrissal crypts on the rostrum of the Guiana dolphin (Sotalia guianensis), structures originally associated with the mammalian whiskers, serve as electroreceptors. Histological investigations revealed that the vibrissal crypts possess a well-innervated ampullary structure reminiscent of ampullary electroreceptors in other species. Psychophysical experiments with a male Guiana dolphin determined a sensory detection threshold for weak electric fields of 4.6 µV cm(-1), which is comparable to the sensitivity of electroreceptors in platypuses. Our results show that electroreceptors can evolve from a mechanosensory organ that nearly all mammals possess and suggest the discovery of this kind of electroreception in more species, especially those with an aquatic or semi-aquatic lifestyle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electroreception and electrolocation in platypus.

              Electroreceptors with sensitivity in the microvolt range, which mainly function to detect live prey, are well known in phylogenetically old fishes and some amphibians. In African mormyriform and South American gymnotiform fishes this sense has evolved to an active system using an electric organ as a source for impedance measurement of the environment and for communication. Electroreception in higher vertebrates has not previously been reported. Here we establish that the platypus, the Australian nocturnal diving monotreme, can locate and avoid objects on the basis of d.c. fields. High-frequency sensitivity to a.c. could allow the detection of muscle activity of animals, such as crustaceans, which are preyed on by the platypus. Recordings of cortical evoked potentials showed that the bill of the platypus, previously considered to be exclusively mechanoreceptive, is also an electroreceptive organ with behavioural and electrophysiological sensitivity of approximately 50 microV cm-1. Several lines of evidence suggest that electroreception has evolved independently in this monotreme.
                Bookmark

                Author and article information

                Journal
                Journal of Comparative Physiology A
                J Comp Physiol A
                Springer Nature
                0340-7594
                1432-1351
                June 2013
                November 28 2012
                : 199
                : 6
                : 555-563
                Article
                10.1007/s00359-012-0780-8
                23187861
                10917beb-182f-46d6-b3a4-cd7c19426cf3
                © 2012
                History

                Comments

                Comment on this article