17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Recent Advances in Stretchable and Transparent Electronic Materials

      , , , ,
      Advanced Electronic Materials
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references274

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Electric Field Effect in Atomically Thin Carbon Films

          We report a naturally-occurring two-dimensional material (graphene that can be viewed as a gigantic flat fullerene molecule, describe its electronic properties and demonstrate all-metallic field-effect transistor, which uniquely exhibits ballistic transport at submicron distances even at room temperature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The rise of graphene

            Graphene is a rapidly rising star on the horizon of materials science and condensed matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed matter physics, where quantum relativistic phenomena, some of which are unobservable in high energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers.

              The development of an electronic skin is critical to the realization of artificial intelligence that comes into direct contact with humans, and to biomedical applications such as prosthetic skin. To mimic the tactile sensing properties of natural skin, large arrays of pixel pressure sensors on a flexible and stretchable substrate are required. We demonstrate flexible, capacitive pressure sensors with unprecedented sensitivity and very short response times that can be inexpensively fabricated over large areas by microstructuring of thin films of the biocompatible elastomer polydimethylsiloxane. The pressure sensitivity of the microstructured films far surpassed that exhibited by unstructured elastomeric films of similar thickness, and is tunable by using different microstructures. The microstructured films were integrated into organic field-effect transistors as the dielectric layer, forming a new type of active sensor device with similarly excellent sensitivity and response times.
                Bookmark

                Author and article information

                Journal
                Advanced Electronic Materials
                Adv. Electron. Mater.
                Wiley-Blackwell
                2199160X
                May 2016
                May 2016
                : 2
                : 5
                : 1500407
                Article
                10.1002/aelm.201500407
                10945e44-7f04-4f3a-9a24-4a2118a9a9b4
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article