4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      GnRH Neurons of Young and Aged Female Rhesus Monkeys Co-Express GPER but Are Unaffected by Long-Term Hormone Replacement

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Menopause is caused by changes in the function of the hypothalamic-pituitary-gonadal axis that controls reproduction. Hypophysiotropic gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus orchestrate the activity of this axis and are regulated by hormonal feedback loops. The mechanisms by which GnRH responds to the primary regulatory sex steroid hormone, estradiol (E<sub>2</sub>), are still poorly understood in the context of menopause. Our goal was to determine whether the G protein-coupled estrogen receptor (GPER) is co-expressed in adult primate GnRH neurons and whether this changes with aging and/or E<sub>2</sub> treatment. We used immunofluorescence double-labeling to characterize the co-expression of GPER in GnRH perikarya and terminals in the hypothalamus. Young and aged rhesus macaques were ovariectomized and given long-term (∼2-year) hormone treatments (E<sub>2</sub>, E<sub>2</sub> + progesterone, or vehicle) selected to mimic currently prescribed hormone replacement therapies used for the alleviation of menopausal symptoms in women. We found that about half of GnRH perikarya co-expressed GPER, while only about 12% of GnRH processes and terminals in the median eminence (ME) were double-labeled. Additionally, many GPER-labeled processes were in direct contact with GnRH neurons, often wrapped around the perikarya and processes and in close proximity in the ME. These results extend prior work by showing robust co-localization of GPER in GnRH in a clinically relevant model, and they support the possibility that GPER-mediated E<sub>2</sub> regulation of GnRH occurs both in the soma and terminals in nonhuman primates.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Individual Comparisons by Ranking Methods

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF.

            Estrogen rapidly activates the mitogen-activated protein kinases, Erk-1 and Erk-2, via an as yet unknown mechanism. Here, evidence is provided that estrogen-induced Erk-1/-2 activation occurs independently of known estrogen receptors, but requires the expression of the G protein-coupled receptor homolog, GPR30. We show that 17beta-estradiol activates Erk-1/-2 not only in MCF-7 cells, which express both estrogen receptor alpha (ER alpha) and ER beta, but also in SKBR3 breast cancer cells, which fail to express either receptor. Immunoblot analysis using GPR30 peptide antibodies showed that this estrogen response was associated with the presence of GPR30 protein in these cells. MDA-MB-231 breast cancer cells (ER alpha-, ER beta+) are GPR30 deficient and insensitive to Erk-1/-2 activation by 17beta-estradiol. Transfection of MDA-MB-231 cells with a GPR30 complementary DNA resulted in overexpression of GPR30 protein and conversion to an estrogen-responsive phenotype. In addition, GPR30-dependent Erk-1/-2 activation was triggered by ER antagonists, including ICI 182,780, yet not by 17alpha-estradiol or progesterone. Consistent with acting through a G protein-coupled receptor, estradiol signaling to Erk-1/-2 occurred via a Gbetagamma-dependent, pertussis toxin-sensitive pathway that required Src-related tyrosine kinase activity and tyrosine phosphorylation of tyrosine 317 of the Shc adapter protein. Reinforcing this idea, estradiol signaling to Erk-1/-2 was dependent upon trans-activation of the epidermal growth factor (EGF) receptor via release of heparan-bound EGF (HB-EGF). Estradiol signaling to Erk-1/-2 could be blocked by: 1) inhibiting EGF-receptor tyrosine kinase activity, 2) neutralizing HB-EGF with antibodies, or 3) down-modulating HB-EGF from the cell surface with the diphtheria toxin mutant, CRM-197. Our data imply that ER-negative breast tumors that continue to express GPR30 may use estrogen to drive growth factor-dependent cellular responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women's Health Initiative randomized trial.

              In the Women's Health Initiative trial of estrogen-plus-progestin therapy, women assigned to active treatment had fewer fractures. To test the hypothesis that the relative risk reduction of estrogen plus progestin on fractures differs according to risk factors for fractures. Randomized controlled trial (September 1993-July 2002) in which 16 608 postmenopausal women aged 50 to 79 years with an intact uterus at baseline were recruited at 40 US clinical centers and followed up for an average of 5.6 years. Women were randomly assigned to receive conjugated equine estrogen, 0.625 mg/d, plus medroxyprogesterone acetate, 2.5 mg/d, in 1 tablet (n = 8506) or placebo (n = 8102). All confirmed osteoporotic fracture events that occurred from enrollment to discontinuation of the trial (July 7, 2002); bone mineral density (BMD), measured in a subset of women (n = 1024) at baseline and years 1 and 3; and a global index, developed to summarize the balance of risks and benefits to test whether the risk-benefit profile differed across tertiles of fracture risk. Seven hundred thirty-three women (8.6%) in the estrogen-plus-progestin group and 896 women (11.1%) in the placebo group experienced a fracture (hazard ratio [HR], 0.76; 95% confidence interval [CI], 0.69-0.83). The effect did not differ in women stratified by age, body mass index, smoking status, history of falls, personal and family history of fracture, total calcium intake, past use of hormone therapy, BMD, or summary fracture risk score. Total hip BMD increased 3.7% after 3 years of treatment with estrogen plus progestin compared with 0.14% in the placebo group (P<.001). The HR for the global index was similar across tertiles of the fracture risk scale (lowest fracture risk tertile, HR, 1.20; 95% CI, 0.93-1.58; middle tertile, HR, 1.23; 95% CI, 1.04-1.46; highest tertile, HR, 1.03; 95% CI, 0.88-1.24) (P for interaction =.54). This study demonstrates that estrogen plus progestin increases BMD and reduces the risk of fracture in healthy postmenopausal women. The decreased risk of fracture attributed to estrogen plus progestin appeared to be present in all subgroups of women examined. When considering the effects of hormone therapy on other important disease outcomes in a global model, there was no net benefit, even in women considered to be at high risk of fracture.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2014
                February 2015
                18 November 2014
                : 100
                : 4
                : 334-346
                Affiliations
                aInstitute for Neuroscience, bPharmacology and Toxicology, College of Pharmacy, and cInstitute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Tex., USA
                Author notes
                *Andrea C. Gore, PhD, University of Texas at Austin, 107 West Dean Keeton, C0875, Austin, TX 78712 (USA), E-Mail andrea.gore@austin.utexas.edu
                Article
                369820 PMC4329056 Neuroendocrinology 2014;100:334-346
                10.1159/000369820
                PMC4329056
                25428637
                10a154cb-6d4c-41b8-b720-c101b8acc72c
                © 2014 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 01 July 2014
                : 05 November 2014
                Page count
                Figures: 7, Tables: 1, References: 79, Pages: 13
                Categories
                Original Paper

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Menopause,Median eminence,Aging,Monkey,Progesterone,G protein-coupled estrogen receptor,Gonadotropin-releasing hormone,Hypothalamus,Estrogen

                Comments

                Comment on this article