147
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of protein kinase C activation on cardiac repolarization and arrhythmogenesis in Langendorff-perfused rabbit hearts.

      Europace
      Action Potentials, drug effects, Animals, Anti-Arrhythmia Agents, pharmacology, Electrophysiologic Techniques, Cardiac, Enzyme Activation, physiology, Enzyme Inhibitors, Female, Indoles, Male, Maleimides, Protein Kinase C, antagonists & inhibitors, metabolism, Rabbits, Signal Transduction, Tetradecanoylphorbol Acetate, analogs & derivatives, Ventricular Dysfunction, enzymology, etiology, physiopathology, Ventricular Fibrillation, Verapamil

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cardiac arrhythmias are still a major cause of mortality in western countries. Currently available antiarrhythmic drugs are limited by a low efficacy and proarrhythmic effects. The role of the protein kinase C (PKC) signalling pathway in arrhythmogenesis is still unclear. The goal of the present study was to test the effects of PKC stimulation on whole heart electrophysiology and its pro-/antiarrhythmic activity. Left ventricular (LV) action potential duration (APD 90%) was determined in 27 Langendorff-perfused rabbit hearts, using Tyrode solution plus the PKC agonist phorbol-12-myristate-13-acetate (PMA; 100 nM) alone (nine rabbits), Verapamil alone (n = 6), or PMA in combination with Verapamil (0.25 mg/L, six rabbits), or bisindolylmaleimide (0.5 microM, n = 6). Intermittent programmed extra-stimulation was performed to induce ventricular arrhythmias. Administration of PMA alone led to a significant shortening of repolarization (APD 90%, 157 +/- 8 vs. 128 +/- 5 ms, P<0.05). Non-sustained ventricular fibrillation (VF) could be induced in seven out of nine animals. After perfusion of Verapamil (156 +/- 6 vs. 169 +/- 4 ms, P>0.05) or bisindolylmaleimide, a selective inhibitor of PKC (136 +/- 4 vs. 146 +/- 4 ms, P>0.05), PMA-induced shortening of repolarization could be inhibited, and induction of VF failed. Verapamil alone did not affect APD and VF could not be induced. Activation of PKC facilitates induction of VF, which is most likely due to a shortening of repolarization and a prominent calcium influx. These findings demonstrate involvement of the PKC-signalling pathway in arrhythmogenesis.

          Related collections

          Author and article information

          Comments

          Comment on this article