20
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clonal growth strategies of Reynoutria japonica in response to light, shade, and mowing, and perspectives for management

      , , ,
      NeoBiota
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many of the most invasive plant species in the world can propagate clonally, suggesting clonality offers advantages that facilitate invasion. Gaining insights into the clonal growth dynamics of invasive plants should thus improve understanding of the mechanisms of their dominance, resilience and expansion. Belonging to the shortlist of the most problematic terrestrial invaders, Reynoutria japonica var. japonica Houtt. (Japanese knotweed) has colonized all five continents, likely facilitated by its impressive ability to propagate vegetatively. However, its clonal growth patterns are surprisingly understudied; we still do not know how individuals respond to key environmental conditions, including light availability and disturbance. To contribute to filling this knowledge gap, we designed a mesocosm experiment to observe the morphological variation in R. japonica growth in homogeneous or heterogeneous conditions of light stress (shade) and disturbance (mowing). Rhizome fragments were planted in the middle of large pots between two habitat patches that consisted of either one or a combination of the following three environmental conditions: full light without mowing, full light with frequent mowing, or shade without mowing. At the end of the experiment, biomass and traits related to clonal growth (spacer and rhizome lengths, number of rhizome branches, and number of ramets) were measured. After 14 months, all individuals had survived, even those frequently mowed or growing under heavy shade. We showed that R. japonica adopts a ‘phalanx’ growth form when growing in full light and a ‘guerrilla’ form when entirely shaded. The former is characteristic of a space-occupancy strategy while the latter is more associated with a foraging strategy. In heterogeneous conditions, we also showed that clones seemed to invest preferentially more in favorable habitat patches rather than in unfavorable ones (mowed or shaded), possibly exhibiting an escape strategy. These observations could improve the management of this species, specifically by illustrating how aggressive early control measures must be, by highlighting the importance of repeated mowing of entire stands, as this plant appears to compensate readily to partial mowing, and by informing on its potential responses towards the restoration of a cover of competitive native plants.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          Population Dynamics and Local Specialization in a Clonal Perennial (Ranunculus Repens): I. The Dynamics of Ramets in Contrasting Habitats

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation.

            The expansion of invasive species challenges our understanding of the process of adaptation. Given that the invasion process often entails population bottlenecks, it is surprising that many invasives appear to thrive even with low levels of sequence-based genetic variation. Using Amplified Fragment Length Polymorphism (AFLP) and methylation sensitive-AFLP (MS-AFLP) markers, we tested the hypothesis that differentiation of invasive Japanese knotweed in response to new habitats is more correlated with epigenetic variation than DNA sequence variation. We found that the relatively little genetic variation present was differentiated among species, with less differentiation among sites within species. In contrast, we found a great deal of epigenetic differentiation among sites within each species and evidence that some epigenetic loci may respond to local microhabitat conditions. Our findings indicate that epigenetic effects could contribute to phenotypic variation in genetically depauperate invasive populations. Deciphering whether differences in methylation patterns are the cause or effect of habitat differentiation will require manipulative studies. © 2012 Blackwell Publishing Ltd/CNRS.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Morphological Plasticity in Clonal Plants: The Foraging Concept Reconsidered

                Bookmark

                Author and article information

                Journal
                NeoBiota
                NB
                Pensoft Publishers
                1314-2488
                1619-0033
                May 14 2020
                May 14 2020
                : 56
                : 89-110
                Article
                10.3897/neobiota.56.47511
                10d8eb57-708e-450d-8942-a6a82e191783
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article