1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characteristics of Analgesic Patch Formulations

      1 , 2 , 3 , 4

      Journal of Pain Research

      Dove

      topical, transdermal, lidocaine, capsaicin, patch adhesion

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Topical and transdermal formulations are a common means of pharmaceutical drug delivery. If a drug is able to penetrate transcutaneously, the skin is an ideal site for the delivery of medications for both local (topical) and systemic (transdermal) effects. The administration of analgesics through the skin poses several potential advantages to those administered orally including compliance, the ability to deliver a drug to a peripheral target site and more stable and sustained plasma levels. One method of drug delivery is with the use of patch formulations – also known as patch systems. Typically, transdermal patches deliver medications intended to reach the systemic circulation, whereas topical patches are designed to keep medication localized for targeted delivery in proximity to the application site. There are a variety of technologies and materials utilized in patches, as well as penetration and formulation enhancers that ultimately affect the performance, efficacy and safety of the patch system. The degree of adherence to the skin is also of critical importance in drug delivery. Patches that lift up or fall off before the prescribed time period may represent a therapeutic failure and must be replaced, increasing patch utilization and cost to the healthcare system or to the patient. The added risk from accidental exposure makes poor patch adhesion a safety issue as well. A variety of analgesics are currently available as patch formulations including local anesthetics, capsaicin, nonsteroidal anti-inflammatory drugs and opioids. This review will highlight each of those patch delivery systems and introduce newer patch technologies that lend towards improved adhesion and compliance. Understanding the designs, limitations and benefits of patch systems will allow clinicians to select between these therapies when appropriate for their patients.

          Related collections

          Most cited references 33

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Topical capsaicin for pain management: therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch

           Nalini Anand,  K. Bley (2011)
          Summary Topical capsaicin formulations are used for pain management. Safety and modest efficacy of low-concentration capsaicin formulations, which require repeated daily self-administration, are supported by meta-analyses of numerous studies. A high-concentration capsaicin 8% patch (Qutenza™) was recently approved in the EU and USA. A single 60-min application in patients with neuropathic pain produced effective pain relief for up to 12 weeks. Advantages of the high-concentration capsaicin patch include longer duration of effect, patient compliance, and low risk for systemic effects or drug–drug interactions. The mechanism of action of topical capsaicin has been ascribed to depletion of substance P. However, experimental and clinical studies show that depletion of substance P from nociceptors is only a correlate of capsaicin treatment and has little, if any, causative role in pain relief. Rather, topical capsaicin acts in the skin to attenuate cutaneous hypersensitivity and reduce pain by a process best described as ‘defunctionalization’ of nociceptor fibres. Defunctionalization is due to a number of effects that include temporary loss of membrane potential, inability to transport neurotrophic factors leading to altered phenotype, and reversible retraction of epidermal and dermal nerve fibre terminals. Peripheral neuropathic hypersensitivity is mediated by diverse mechanisms, including altered expression of the capsaicin receptor TRPV1 or other key ion channels in affected or intact adjacent peripheral nociceptive nerve fibres, aberrant re-innervation, and collateral sprouting, all of which are defunctionalized by topical capsaicin. Evidence suggests that the utility of topical capsaicin may extend beyond painful peripheral neuropathies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Barrier function of the skin: "la raison d'être" of the epidermis.

             K C Madison (2003)
            The primary function of the epidermis is to produce the protective, semi-permeable stratum corneum that permits terrestrial life. The barrier function of the stratum corneum is provided by patterned lipid lamellae localized to the extracellular spaces between corneocytes. Anucleate corneocytes contain keratin filaments bound to a peripheral cornified envelope composed of cross-linked proteins. The many layers of these specialized cells in the stratum corneum provide a tough and resilient framework for the intercellular lipid lamellae. The lamellae are derived from disk-like lipid membranes extruded from lamellar granules into the intercellular spaces of the upper granular layer. Lysosomal and other enzymes present in the extracellular compartment are responsible for the lipid remodeling required to generate the barrier lamellae as well as for the reactions that result in desquamation. Lamellar granules likely originate from the Golgi apparatus and are currently thought to be elements of the tubulo-vesicular trans-Golgi network. The regulation of barrier lipid synthesis has been studied in a variety of models, with induction of several enzymes demonstrated during fetal development and keratinocyte differentiation, but an understanding of this process at the molecular genetic level awaits further study. Certain genetic defects in lipid metabolism or in the protein components of the stratum corneum produce scaly or ichthyotic skin with abnormal barrier lipid structure and function. The inflammatory skin diseases psoriasis and atopic dermatitis also show decreased barrier function, but the underlying mechanisms remain under investigation. Topically applied "moisturizers" work by acting as humectants or by providing an artificial barrier to trans-epidermal water loss; current work has focused on developing a more physiologic mix of lipids for topical application to skin. Recent studies in genetically engineered mice have suggested an unexpected role for tight junctions in epidermal barrier function and further developments in this area are expected. Ultimately, more sophisticated understanding of epidermal barrier function will lead to more rational therapy of a host of skin conditions in which the barrier is impaired.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Relative efficacy and safety of topical non-steroidal anti-inflammatory drugs for osteoarthritis: a systematic review and network meta-analysis of randomised controlled trials and observational studies

              Objectives To compare the efficacy and safety of topical non-steroidal anti-inflammatory drugs (NSAIDs), including salicylate, for the treatment of osteoarthritis (OA). Methods PubMed, Embase, Cochrane Library and Web of Science were searched from 1966 to January 2017. Randomised controlled trials (RCTs) comparing topical NSAIDs with placebo or each other in patients with OA and observational studies comparing topical NSAIDs with no treatment or each other irrespective of disease were included. Two investigators identified studies and independently extracted data. Bayesian network and conventional meta-analyses were conducted. The primary outcomes were pain relief for RCTs and risk of adverse effects (AEs) for observational studies. Results 43 studies, comprising 36 RCTs (7 900 patients with OA) and seven observational studies (218 074 participants), were included. Overall, topical NSAIDs were superior to placebo for relieving pain (standardised mean difference (SMD)=−0.30, 95% CI −0.40 to –0.20) and improving function (SMD=−0.35, 95% CI −0.45 to –0.24) in OA. Of all topical NSAIDs, diclofenac patches were most effective for OA pain (SMD=−0.81, 95% CI −1.12 to –0.52) and piroxicam was most effective for functional improvement (SMD=−1.04, 95% CI −1.60 to –0.48) compared with placebo. Although salicylate gel was associated with higher withdrawal rates due to AEs, the remaining topical NSAIDs were not associated with any increased local or systemic AEs. Conclusions Topical NSAIDs were effective and safe for OA. Diclofenac patches may be the most effective topical NSAID for pain relief. No serious gastrointestinal and renal AEs were observed in trials or the general population. However, confirmation of the cardiovascular safety of topical NSAIDs still warrants further observational study.
                Bookmark

                Author and article information

                Journal
                J Pain Res
                J Pain Res
                jpr
                jpainres
                Journal of Pain Research
                Dove
                1178-7090
                22 September 2020
                2020
                : 13
                : 2343-2354
                Affiliations
                [1 ]Mid America PolyClinic , Overland Park, KS, USA
                [2 ]Kansas City University of Medicine and Biosciences , Kansas City, MO, USA
                [3 ]Department of Anesthesiology and Pain Management, Englewood Hospital and Medical Center , Englewood, NJ, USA
                [4 ]Department of Anesthesiology and Perioperative Medicine, Rutgers New Jersey School of Medicine , Newark, NJ, USA
                Author notes
                Correspondence: Srinivas Nalamachu Tel +1 913-317-5300Fax +1 913-317-5301 Email nalamachu@yahoo.com
                Article
                270169
                10.2147/JPR.S270169
                7520099
                © 2020 Nalamachu and Gudin.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 1, Tables: 2, References: 55, Pages: 12
                Funding
                An educational grant for editorial support was provided by Scilex Pharmaceuticals.
                Categories
                Review

                Anesthesiology & Pain management

                patch adhesion, capsaicin, lidocaine, transdermal, topical

                Comments

                Comment on this article