36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polarized E-cadherin endocytosis directs actomyosin remodeling during embryonic wound repair

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Clathrin, dynamin, and ARF6 accumulate around wounds in Drosophila embryos in a calcium- and actomyosin-dependent manner and drive polarized E-cadherin endocytosis, which is necessary for actomyosin remodeling during wound repair.

          Abstract

          Embryonic epithelia have a remarkable ability to rapidly repair wounds. A supracellular actomyosin cable around the wound coordinates cellular movements and promotes wound closure. Actomyosin cable formation is accompanied by junctional rearrangements at the wound margin. We used in vivo time-lapse quantitative microscopy to show that clathrin, dynamin, and the ADP-ribosylation factor 6, three components of the endocytic machinery, accumulate around wounds in Drosophila melanogaster embryos in a process that requires calcium signaling and actomyosin contractility. Blocking endocytosis with pharmacological or genetic approaches disrupted wound repair. The defect in wound closure was accompanied by impaired removal of E-cadherin from the wound edge and defective actomyosin cable assembly. E-cadherin overexpression also resulted in reduced actin accumulation around wounds and slower wound closure. Reducing E-cadherin levels in embryos in which endocytosis was blocked rescued actin localization to the wound margin. Our results demonstrate a central role for endocytosis in wound healing and indicate that polarized E-cadherin endocytosis is necessary for actomyosin remodeling during embryonic wound repair.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein.

          Recently, several groups have developed green fluorescent protein (GFP)-based Ca(2+) probes. When applied in cells, however, these probes are difficult to use because of a low signal-to-noise ratio. Here we report the development of a high-affinity Ca(2+) probe composed of a single GFP (named G-CaMP). G-CaMP showed an apparent K(d) for Ca(2+) of 235 nM. Association kinetics of Ca(2+) binding were faster at higher Ca(2+) concentrations, with time constants decreasing from 230 ms at 0.2 microM Ca(2+) to 2.5 ms at 1 microM Ca(2+). Dissociation kinetics (tau approximately 200 ms) are independent of Ca(2+) concentrations. In HEK-293 cells and mouse myotubes expressing G-CaMP, large fluorescent changes were observed in response to application of drugs or electrical stimulations. G-CaMP will be a useful tool for visualizing intracellular Ca2+ in living cells. Mutational analysis, together with previous structural information, suggests the residues that may alter the fluorescence of GFP.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase).

            The small GTPase Rho is implicated in physiological functions associated with actin-myosin filaments such as cytokinesis, cell motility, and smooth muscle contraction. We have recently identified and molecularly cloned Rho-associated serine/threonine kinase (Rho-kinase), which is activated by GTP Rho (Matsui, T., Amano, M., Yamamoto, T., Chihara, K., Nakafuku, M., Ito, M., Nakano, T., Okawa, K., Iwamatsu, A., and Kaibuchi, K. (1996) EMBO J. 15, 2208-2216). Here we found that Rho-kinase stoichiometrically phosphorylated myosin light chain (MLC). Peptide mapping and phosphoamino acid analyses revealed that the primary phosphorylation site of MLC by Rho-kinase was Ser-19, which is the site phosphorylated by MLC kinase. Rho-kinase phosphorylated recombinant MLC, whereas it failed to phosphorylate recombinant MLC, which contained Ala substituted for both Thr-18 and Ser-19. We also found that the phosphorylation of MLC by Rho-kinase resulted in the facilitation of the actin activation of myosin ATPase. Thus, it is likely that once Rho is activated, then it can interact with Rho-kinase and activate it. The activated Rho-kinase subsequently phosphorylates MLC. This may partly account for the mechanism by which Rho regulates cytokinesis, cell motility, or smooth muscle contraction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation

              The clathrin-coated pit lattice is held onto the plasma membrane by an integral membrane protein that binds the clathrin AP-2 subunit with high affinity. In vitro studies have suggested that this protein controls the assembly of the pit because membrane bound AP-2 is required for lattice assembly. If so, the AP-2 binding site must be a resident protein of the coated pit and recycle with other receptors that enter cells through this pathway. Proper recycling, however, would require the switching off of AP-2 binding to allow the binding site to travel through the endocytic pathway unencumbered. Evidence for this hypothesis has been revealed by the cationic amphiphilic class of drugs (CAD), which have previously been found to inhibit receptor recycling. Incubation of human fibroblasts in the presence of these drugs caused clathrin lattices to assemble on endosomal membranes and at the same time prevented coated pit assembly at the cell surface. These effects suggest that CADs reverse an on/off switch that controls AP-2 binding to membranes. We conclude that cells have a mechanism for switching on and off AP-2 binding during the endocytic cycle.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                31 August 2015
                : 210
                : 5
                : 801-816
                Affiliations
                [1 ]Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
                [2 ]Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
                [3 ]Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
                Author notes
                Correspondence to Rodrigo Fernandez-Gonzalez: rodrigo.fernandez.gonzalez@ 123456utoronto.ca
                Article
                201501076
                10.1083/jcb.201501076
                4555830
                26304727
                10e6f03b-e296-4214-b4e9-b23dff589d4e
                © 2015 Hunter et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 20 January 2015
                : 14 July 2015
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article