20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Developing a kidney and urinary pathway knowledge base

      research-article
      1 , , 2 , 3 , 2 , 3 , 1 ,
      Journal of Biomedical Semantics
      BioMed Central
      Bio-Ontologies 2010: Semantic Applications in Life Sciences
      9-10 July 2010

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Chronic renal disease is a global health problem. The identification of suitable biomarkers could facilitate early detection and diagnosis and allow better understanding of the underlying pathology. One of the challenges in meeting this goal is the necessary integration of experimental results from multiple biological levels for further analysis by data mining. Data integration in the life science is still a struggle, and many groups are looking to the benefits promised by the Semantic Web for data integration.

          Results

          We present a Semantic Web approach to developing a knowledge base that integrates data from high-throughput experiments on kidney and urine. A specialised KUP ontology is used to tie the various layers together, whilst background knowledge from external databases is incorporated by conversion into RDF. Using SPARQL as a query mechanism, we are able to query for proteins expressed in urine and place these back into the context of genes expressed in regions of the kidney.

          Conclusions

          The KUPKB gives KUP biologists the means to ask queries across many resources in order to aggregate knowledge that is necessary for answering biological questions. The Semantic Web technologies we use, together with the background knowledge from the domain’s ontologies, allows both rapid conversion and integration of this knowledge base. The KUPKB is still relatively small, but questions remain about scalability, maintenance and availability of the knowledge itself.

          Availability

          The KUPKB may be accessed via http://www.e-lico.eu/kupkb.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Modeling sample variables with an Experimental Factor Ontology

            Motivation: Describing biological sample variables with ontologies is complex due to the cross-domain nature of experiments. Ontologies provide annotation solutions; however, for cross-domain investigations, multiple ontologies are needed to represent the data. These are subject to rapid change, are often not interoperable and present complexities that are a barrier to biological resource users. Results: We present the Experimental Factor Ontology, designed to meet cross-domain, application focused use cases for gene expression data. We describe our methodology and open source tools used to create the ontology. These include tools for creating ontology mappings, ontology views, detecting ontology changes and using ontologies in interfaces to enhance querying. The application of reference ontologies to data is a key problem, and this work presents guidelines on how community ontologies can be presented in an application ontology in a data-driven way. Availability: http://www.ebi.ac.uk/efo Contact: malone@ebi.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bio2RDF: towards a mashup to build bioinformatics knowledge systems.

              Presently, there are numerous bioinformatics databases available on different websites. Although RDF was proposed as a standard format for the web, these databases are still available in various formats. With the increasing popularity of the semantic web technologies and the ever growing number of databases in bioinformatics, there is a pressing need to develop mashup systems to help the process of bioinformatics knowledge integration. Bio2RDF is such a system, built from rdfizer programs written in JSP, the Sesame open source triplestore technology and an OWL ontology. With Bio2RDF, documents from public bioinformatics databases such as Kegg, PDB, MGI, HGNC and several of NCBI's databases can now be made available in RDF format through a unique URL in the form of http://bio2rdf.org/namespace:id. The Bio2RDF project has successfully applied the semantic web technology to publicly available databases by creating a knowledge space of RDF documents linked together with normalized URIs and sharing a common ontology. Bio2RDF is based on a three-step approach to build mashups of bioinformatics data. The present article details this new approach and illustrates the building of a mashup used to explore the implication of four transcription factor genes in Parkinson's disease. The Bio2RDF repository can be queried at http://bio2rdf.org.
                Bookmark

                Author and article information

                Conference
                J Biomed Semantics
                Journal of Biomedical Semantics
                BioMed Central
                2041-1480
                2011
                17 May 2011
                : 2
                : Suppl 2
                : S7
                Affiliations
                [1 ]School of Computer Science, University of Manchester, UK
                [2 ]Institut National de la Santé et de la Recherche Médicale (INSERM), U858, Toulouse, France
                [3 ]Université Toulouse III Paul-Sabatier, I2MR, IFR150, Toulouse, France
                Article
                2041-1480-2-S2-S7
                10.1186/2041-1480-2-S2-S7
                3102896
                21624162
                10e7f700-f34b-402b-ab7f-52d5634d8860
                Copyright ©2011 Jupp et al; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Bio-Ontologies 2010: Semantic Applications in Life Sciences
                Boston, MA, USA
                9-10 July 2010
                History
                Categories
                Proceedings

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article