13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Eliminating acetate formation improves citramalate production by metabolically engineered Escherichia coli

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Citramalate, a chemical precursor to the industrially important methacrylic acid (MAA), can be synthesized using Escherichia coli overexpressing citramalate synthase ( cimA gene). Deletion of gltA encoding citrate synthase and leuC encoding 3-isopropylmalate dehydratase were critical to achieving high citramalate yields. Acetate is an undesirable by-product potentially formed from pyruvate and acetyl-CoA, the precursors of citramalate during aerobic growth of E. coli. This study investigated strategies to minimize acetate and maximize citramalate production in E. coli mutants expressing the cimA gene.

          Results

          Key knockouts that minimized acetate formation included acetate kinase ( ackA), phosphotransacetylase ( pta), and in particular pyruvate oxidase ( poxB). Deletion of glucose 6-phosphate dehydrogenase ( zwf) and ATP synthase ( atpFH) aimed at improving glycolytic flux negatively impacted cell growth and citramalate accumulation in shake flasks. In a repetitive fed-batch process, E. coli gltA leuC ackA- pta poxB overexpressing cimA generated 54.1 g/L citramalate with a yield of 0.64 g/g glucose (78% of theoretical maximum yield), and only 1.4 g/L acetate in 87 h.

          Conclusions

          This study identified the gene deletions critical to reducing acetate accumulation during aerobic growth and citramalate production in metabolically engineered E. coli strains. The citramalate yield and final titer relative to acetate at the end of the fed-batch process are the highest reported to date (a mass ratio of citramalate to acetate of nearly 40) without being detrimental to citramalate productivity, significantly improving a potential process for the production of this five-carbon chemical.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio.

          Overflow metabolism in the form of aerobic acetate excretion by Escherichia coli is an important physiological characteristic of this common industrial microorganism. Although acetate formation occurs under conditions of high glucose consumption, the genetic mechanisms that trigger this phenomenon are not clearly understood. We report on the role of the NADH/NAD ratio (redox ratio) in overflow metabolism. We modulated the redox ratio in E. coli through the expression of Streptococcus pneumoniae (water-forming) NADH oxidase. Using steady-state chemostat cultures, we demonstrated a strong correlation between acetate formation and this redox ratio. We furthermore completed genome-wide transcription analyses of a control E. coli strain and an E. coli strain overexpressing NADH oxidase. The transcription results showed that in the control strain, several genes involved in the tricarboxylic acid (TCA) cycle and respiration were repressed as the glucose consumption rate increased. Moreover, the relative repression of these genes was alleviated by expression of NADH oxidase and the resulting reduced redox ratio. Analysis of a promoter binding site upstream of the genes which correlated with redox ratio revealed a degenerate sequence with strong homology with the binding site for ArcA. Deletion of arcA resulted in acetate reduction and increased the biomass yield due to the increased capacities of the TCA cycle and respiration. Acetate formation was completely eliminated by reducing the redox ratio through expression of NADH oxidase in the arcA mutant, even at a very high glucose consumption rate. The results provide a basis for studying new regulatory mechanisms prevalent at reduced NADH/NAD ratios, as well as for designing more efficient bioprocesses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Overcoming acetate in Escherichia coli recombinant protein fermentations.

            Escherichia coli is the organism of choice for the expression of a wide variety of recombinant proteins for therapeutic, diagnostic and industrial applications. E. coli generates acetic acid (acetate) as an undesirable by-product that has several negative effects on protein production. Various strategies have been developed to limit acetate accumulation or reduce its negative effects to increase the productivity of recombinant proteins. This article reviews recent strategies for reducing or eliminating acetate, including approaches that optimize the protein production process as well as those that involve modifying the host organism itself.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The glycolytic flux in Escherichia coli is controlled by the demand for ATP.

              The nature of the control of glycolytic flux is one of the central, as-yet-uncharacterized issues in cellular metabolism. We developed a molecular genetic tool that specifically induces ATP hydrolysis in living cells without interfering with other aspects of metabolism. Genes encoding the F(1) part of the membrane-bound (F(1)F(0)) H(+)-ATP synthase were expressed in steadily growing Escherichia coli cells, which lowered the intracellular [ATP]/[ADP] ratio. This resulted in a strong stimulation of the specific glycolytic flux concomitant with a smaller decrease in the growth rate of the cells. By optimizing additional ATP hydrolysis, we increased the flux through glycolysis to 1.7 times that of the wild-type flux. The results demonstrate why attempts in the past to increase the glycolytic flux through overexpression of glycolytic enzymes have been unsuccessful: the majority of flux control (>75%) resides not inside but outside the pathway, i.e., with the enzymes that hydrolyze ATP. These data further allowed us to answer the question of whether catabolic or anabolic reactions control the growth of E. coli. We show that the majority of the control of growth rate resides in the anabolic reactions, i.e., the cells are mostly "carbon" limited. Ways to increase the efficiency and productivity of industrial fermentation processes are discussed.
                Bookmark

                Author and article information

                Contributors
                siri13@uga.edu
                duriei@uga.edu
                wu@uga.edu
                afaq.mohamed@yahoo.com
                (706) 542-0833 , eiteman@engr.uga.edu
                Journal
                Microb Cell Fact
                Microb. Cell Fact
                Microbial Cell Factories
                BioMed Central (London )
                1475-2859
                21 June 2017
                21 June 2017
                2017
                : 16
                : 114
                Affiliations
                ISNI 0000 0004 1936 738X, GRID grid.213876.9, School of Chemical, Materials and Biomedical Engineering, Driftmier Engineering Center, , University of Georgia, ; Athens, GA 30602 USA
                Article
                729
                10.1186/s12934-017-0729-2
                5480221
                10eb4a10-dac5-46bf-8ea0-42da5eef4397
                © The Author(s) 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 21 February 2017
                : 19 June 2017
                Categories
                Research
                Custom metadata
                © The Author(s) 2017

                Biotechnology
                acetyl-coa,pyruvate,citramalate,escherichia coli,acetate,glucose,fed-batch
                Biotechnology
                acetyl-coa, pyruvate, citramalate, escherichia coli, acetate, glucose, fed-batch

                Comments

                Comment on this article