20
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Enriching the ant tree of life: enhanced UCE bait set for genome-scale phylogenetics of ants and other Hymenoptera

      , , ,
      Methods in Ecology and Evolution
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          ART: a next-generation sequencing read simulator.

          ART is a set of simulation tools that generate synthetic next-generation sequencing reads. This functionality is essential for testing and benchmarking tools for next-generation sequencing data analysis including read alignment, de novo assembly and genetic variation discovery. ART generates simulated sequencing reads by emulating the sequencing process with built-in, technology-specific read error models and base quality value profiles parameterized empirically in large sequencing datasets. We currently support all three major commercial next-generation sequencing platforms: Roche's 454, Illumina's Solexa and Applied Biosystems' SOLiD. ART also allows the flexibility to use customized read error model parameters and quality profiles. Both source and binary software packages are available at http://www.niehs.nih.gov/research/resources/software/art.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads.

            High-volume sequencing of DNA and RNA is now within reach of any research laboratory and is quickly becoming established as a key research tool. In many workflows, each of the short sequences ("reads") resulting from a sequencing run are first "mapped" (aligned) to a reference sequence to infer the read from which the genomic location derived, a challenging task because of the high data volumes and often large genomes. Existing read mapping software excel in either speed (e.g., BWA, Bowtie, ELAND) or sensitivity (e.g., Novoalign), but not in both. In addition, performance often deteriorates in the presence of sequence variation, particularly so for short insertions and deletions (indels). Here, we present a read mapper, Stampy, which uses a hybrid mapping algorithm and a detailed statistical model to achieve both speed and sensitivity, particularly when reads include sequence variation. This results in a higher useable sequence yield and improved accuracy compared to that of existing software.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              ASTRAL: genome-scale coalescent-based species tree estimation

              Motivation: Species trees provide insight into basic biology, including the mechanisms of evolution and how it modifies biomolecular function and structure, biodiversity and co-evolution between genes and species. Yet, gene trees often differ from species trees, creating challenges to species tree estimation. One of the most frequent causes for conflicting topologies between gene trees and species trees is incomplete lineage sorting (ILS), which is modelled by the multi-species coalescent. While many methods have been developed to estimate species trees from multiple genes, some which have statistical guarantees under the multi-species coalescent model, existing methods are too computationally intensive for use with genome-scale analyses or have been shown to have poor accuracy under some realistic conditions. Results: We present ASTRAL, a fast method for estimating species trees from multiple genes. ASTRAL is statistically consistent, can run on datasets with thousands of genes and has outstanding accuracy—improving on MP-EST and the population tree from BUCKy, two statistically consistent leading coalescent-based methods. ASTRAL is often more accurate than concatenation using maximum likelihood, except when ILS levels are low or there are too few gene trees. Availability and implementation: ASTRAL is available in open source form at https://github.com/smirarab/ASTRAL/. Datasets studied in this article are available at http://www.cs.utexas.edu/users/phylo/datasets/astral. Contact: warnow@illinois.edu Supplementary information: Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Journal
                Methods in Ecology and Evolution
                Methods Ecol Evol
                Wiley-Blackwell
                2041210X
                June 2017
                June 2017
                : 8
                : 6
                : 768-776
                Article
                10.1111/2041-210X.12742
                10ee686b-7ba1-4201-a822-a49113002425
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1

                History

                Comments

                Comment on this article