127
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      MPLW515L Is a Novel Somatic Activating Mutation in Myelofibrosis with Myeloid Metaplasia

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The JAK2V617F allele has recently been identified in patients with polycythemia vera (PV), essential thrombocytosis (ET), and myelofibrosis with myeloid metaplasia (MF). Subsequent analysis has shown that constitutive activation of the JAK-STAT signal transduction pathway is an important pathogenetic event in these patients, and that enzymatic inhibition of JAK2V617F may be of therapeutic benefit in this context. However, a significant proportion of patients with ET or MF are JAK2V617F-negative. We hypothesized that activation of the JAK-STAT pathway might also occur as a consequence of activating mutations in certain hematopoietic-specific cytokine receptors, including the erythropoietin receptor (EPOR), the thrombopoietin receptor (MPL), or the granulocyte-colony stimulating factor receptor (GCSFR).

          Methods and Findings

          DNA sequence analysis of the exons encoding the transmembrane and juxtamembrane domains of EPOR, MPL, and GCSFR, and comparison with germline DNA derived from buccal swabs, identified a somatic activating mutation in the transmembrane domain of MPL (W515L) in 9% (4/45) of JAKV617F-negative MF. Expression of MPLW515L in 32D, UT7, or Ba/F3 cells conferred cytokine-independent growth and thrombopoietin hypersensitivity, and resulted in constitutive phosphorylation of JAK2, STAT3, STAT5, AKT, and ERK. Furthermore, a small molecule JAK kinase inhibitor inhibited MPLW515L-mediated proliferation and JAK-STAT signaling in vitro. In a murine bone marrow transplant assay, expression of MPLW515L, but not wild-type MPL, resulted in a fully penetrant myeloproliferative disorder characterized by marked thrombocytosis (Plt count 1.9–4.0 × 10 12/L), marked splenomegaly due to extramedullary hematopoiesis, and increased reticulin fibrosis.

          Conclusions

          Activation of JAK-STAT signaling via MPLW515L is an important pathogenetic event in patients with JAK2V617F-negative MF. The bone marrow transplant model of MPLW515L-mediated myeloproliferative disorders (MPD) exhibits certain features of human MF, including extramedullary hematopoiesis, splenomegaly, and megakaryocytic proliferation. Further analysis of positive and negative regulators of the JAK-STAT pathway is warranted in JAK2V617F-negative MPD.

          Editors' Summary

          Background.

          Myelofibrosis with myeloid metaplasia (MF) is one of a group of chronic blood disorders, known as chronic myeloproliferative disorders. These disorders sometimes turn into acute leukemia. The main abnormality in myelofibrosis is for the bone marrow to become filled with fibrous (scar) tissue (hence the name myelofibrosis), which stops it from producing normal blood cells efficiently. In addition, the white blood cells that remain are abnormal (that is, metaplastic). The clinical effect of these abnormalities are that patients are anemic (they have low numbers of red cells), are more likely to get infections because of the abnormal white cells which cannot fight infections normally, and may bleed more easily because of a lack of the platelets that help the blood to clot. Scientists who study this disorder believe that the disease starts from just one abnormal cell, which divides to replace all the other cells—that is, all the abnormal cells are part of one clone.

          Why Was This Study Done?

          In two similar diseases, polycythemia vera (in which the bone marrow produces too many red blood cells) and essential thrombocytosis (in which the bone marrow produces too many platelets), and in some patients with MF, scientists have found genetic changes which seem to trigger these diseases. However, there are some patients with MF in which no abnormal gene has been found. The scientists here wanted to look at other genes to see if they could find any changes that might trigger MF.

          What Did the Researchers Do and Find?

          They decoded the DNA sequence of three genes that are known to be involved in how blood cells develop for 45 patients with MF. They looked at DNA from white blood cells, and also from normal cheek cells for comparison. They found that in four of the 45 patients the DNA in the bone marrow, but not the cheek, carried a mutation in a gene for the thrombopoietin receptor (also called MPL). This gene is necessary for the cells that make platelets to grow correctly. The mutation was not present in any samples from patients with diseases related to MF, nor in 270 normal samples. The mutation that was identified was at position 515 in the MPL gene sequence, hence the name MPLW515L—the W and the L are the shorthand way of indicating exactly which change occurred. The change meant that the gene became abnormally active. The researchers tested the effect of the abnormal gene by putting it into cells grown in culture in the laboratory; they found that it made the cells grow more than was normal. In addition, when cells with the abnormal gene were put into mice, the mice developed a blood disorder similar to that seen in humans with MF.

          What Do These Findings Mean?

          It seems likely that the genetic change that has been identified here is responsible for the MF that develops in some patients. The MPL gene is known to be part of a pathway of genes that control how certain blood cells develop. However, it is not yet clear exactly how the genetic change found here causes the blood cells to grow abnormally, or how it causes the other clinical effects of MF. Further work will also need to be done to see if it is possible to develop drugs that can act on this gene mutation, or on the other genes that it affects so as to return the cells to normal.

          Additional Information.

          Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030270.

          • MedlinePlus, a Web site of the US National Library of Health, has pages of information on myelofibrosis and related diseases

          • The National Cancer Institute, which funds research into many cancers, has information for patients on myelofibrosis, including information on clinical trials

          • The MPD Foundation has information for patients with myelofibrosis and related diseases

          Abstract

          Activation of JAK-STAT signaling via a mutation - MPLW515L- in the thrombopoietin receptor seems to have a role in the pathogenesis of some patients with myelofibrosis.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome.

          Idiopathic hypereosinophilic syndrome involves a prolonged state of eosinophilia associated with organ dysfunction. It is of unknown cause. Recent reports of responses to imatinib in patients with the syndrome suggested that an activated kinase such as ABL, platelet-derived growth factor receptor (PDGFR), or KIT, all of which are inhibited by imatinib, might be the cause. We treated 11 patients with the hypereosinophilic syndrome with imatinib and identified the molecular basis for the response. Nine of the 11 patients treated with imatinib had responses lasting more than three months in which the eosinophil count returned to normal. One such patient had a complex chromosomal abnormality, leading to the identification of a fusion of the Fip1-like 1 (FIP1L1) gene to the PDGFRalpha (PDGFRA) gene generated by an interstitial deletion on chromosome 4q12. FIP1L1-PDGFRalpha is a constitutively activated tyrosine kinase that transforms hematopoietic cells and is inhibited by imatinib (50 percent inhibitory concentration, 3.2 nM). The FIP1L1-PDGFRA fusion gene was subsequently detected in 9 of 16 patients with the syndrome and in 5 of the 9 patients with responses to imatinib that lasted more than three months. Relapse in one patient correlated with the appearance of a T674I mutation in PDGFRA that confers resistance to imatinib. The hypereosinophilic syndrome may result from a novel fusion tyrosine kinase - FIP1L1-PDGFRalpha - that is a consequence of an interstitial chromosomal deletion. The acquisition of a T674I resistance mutation at the time of relapse demonstrates that FIP1L1-PDGFRalpha is the target of imatinib. Our data indicate that the deletion of genetic material may result in gain-of-function fusion proteins. Copyright 2003 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome.

            In tumor cells from virtually all patients with chronic myelogenous leukemia, the Philadelphia chromosome, a fusion of chromosomes 9 and 22, directs the synthesis of the P210bcr/abl protein. The protein-tyrosine kinase activity and hybrid structure of P210bcr/abl are similar to the oncogene product of the Abelson murine leukemia virus, P160gag/v-abl, which induces acute lymphomas. To determine whether P210bcr/abl can induce chronic myelogenous leukemia, murine bone marrow was infected with a retrovirus encoding P210bcr/abl and transplanted into irradiated syngeneic recipients. Transplant recipients developed several hematologic malignancies; prominent among them was a myeloproliferative syndrome closely resembling the chronic phase of human chronic myelogenous leukemia. Tumor tissue from diseased mice harbored the provirus encoding P210bcr/abl. These results demonstrate that P210bcr/abl expression can induce chronic myelogenous leukemia. Retrovirus-mediated expression of the protein provides a murine model system for further analysis of the disease.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome

                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                pmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                July 2006
                18 July 2006
                : 3
                : 7
                : e270
                Affiliations
                [1] 1Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
                [2] 2Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
                [3] 3Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
                [4] 4Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
                University of California Los Angeles United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: ross_levine@ 123456dfci.harvard.edu

                Competing Interests: The authors have declared that no competing interests exist.

                Article
                10.1371/journal.pmed.0030270
                1502153
                16834459
                11064a9e-b1d9-459d-89bf-fc0e11a2e692
                Copyright: © 2006 Pikman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 February 2006
                : 26 April 2006
                Categories
                Research Article
                Cancer Biology
                Genetics/Genomics/Gene Therapy
                Hematology
                Hematology (Including Blood Transfusion)
                Oncology
                Genetics

                Medicine
                Medicine

                Comments

                Comment on this article