2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Early Cancer Detection in Blood Vessels Using Mobile Nanosensors

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper, we propose using mobile nanosensors (MNSs) for early stage anomaly detection. For concreteness, we focus on the detection of cancer cells located in a particular region of a blood vessel. These cancer cells produce and emit special molecules, so-called biomarkers, which are symptomatic for the presence of anomaly, into the cardiovascular system. Detection of cancer biomarkers with conventional blood tests is difficult in the early stages of a cancer due to the very low concentration of the biomarkers in the samples taken. However, close to the cancer cells, the concentration of the cancer biomarkers is high. Hence, detection is possible if a sensor with the ability to detect these biomarkers is placed in the vicinity of the cancer cells. Therefore, in this paper, we study the use of MNSs that are injected at a suitable injection site and can move through the blood vessels of the cardiovascular system, which potentially contain cancer cells. These MNSs can be activated by the biomarkers close to the cancer cells, where the biomarker concentration is sufficiently high. Eventually, the MNSs are collected by a fusion center (FC) where their activation levels are read and exploited to declare the presence of anomaly. We analytically derive the biomarker concentration as well as the probability mass function of the MNSs' activation levels and validate the obtained results via particle-based simulations. Then, we derive the optimal decision rule for the FC regarding the presence of anomaly assuming that the entire network is known at the FC. Finally, for the FC, we propose a simple sum detector that does not require knowledge of the network topology. Our simulations reveal that while the optimal detector achieves a higher performance than the sum detector, both proposed detectors significantly outperform a benchmark scheme that used fixed nanosensors at the FC.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer biomarker detection: recent achievements and challenges.

          The early detection of cancer can significantly reduce cancer mortality and saves lives. Thus, a great deal of effort has been devoted to the exploration of new technologies to detect early signs of the disease. Cancer biomarkers cover a broad range of biochemical entities, such as nucleic acids, proteins, sugars, small metabolites, and cytogenetic and cytokinetic parameters, as well as entire tumour cells found in the body fluid. They can be used for risk assessment, diagnosis, prognosis, and for the prediction of treatment efficacy and toxicity and recurrence. In this review, we provide an overview of recent advances in cancer biomarker detection. Several representative examples using different approaches for each biomarker have been reviewed, and all these cases demonstrate that the multidisciplinary technology-based cancer diagnostics are becoming an increasingly relevant alternative to traditional techniques. In addition, we also discuss the unsolved problems and future challenges in the evaluation of cancer biomarkers. Clearly, solving these hurdles requires great effort and collaboration from different communities of chemists, physicists, biologists, clinicians, material-scientists, and engineering and technical researchers. A successful outcome will result in the realization of point-of-care diagnosis and individualized treatment of cancers by non-invasive and convenient tests in the future.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A Comprehensive Survey of Recent Advancements in Molecular Communication

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Predicting the course of Gompertzian growth.

                Bookmark

                Author and article information

                Journal
                22 May 2018
                Article
                1805.08777
                11100f23-e472-4e9e-941e-a04df4d98db9

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                q-bio.TO cs.IT math.IT

                Numerical methods,Information systems & theory,Life sciences
                Numerical methods, Information systems & theory, Life sciences

                Comments

                Comment on this article