8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evaluation of the trifluoromethanosulfonic acid/trifluoroacetic acid/thioanisole cleavage procedure for application in solid-phase peptide synthesis.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As an extension of our investigation of peptidyl-resin linkage stability towards different cleavage procedures used in the solid-phase peptide synthesis (SPPS) technique, the present paper evaluated the trifluoromethanesulfonic acid (TFMSA)/trifluoroacetic acid (TFA)/thioanisole method, varying the type of resin (benzhydrylamine-resin, BHAR; methylbenzhydrylamine-resin, MBHAR and 4-(oxymethyl)-phenylacetamidomethyl-resin, PAMR) and peptide resin-bound residue (Gly and Phe). The vasoactive angiotensin II (AII, DRVYIHPF) and its [Gly8]-AII analogue linked to those resins used routinely in tert-butyloxycarbonyl (Boc)-SPPS chemistry were submitted comparatively to a time course study towards TFMSA/TFA cleavage. At 0 degrees C, [Gly8]-AII was completely removed from all resins in less than 6 h, but the hydrophobic Phe8 moiety-containing AII sequence was only partially cleaved (not more than 15%) from BHAR or MBHAR in this period. At 25 degrees C, [Gly8]-AII cleavage time decreased to less than 2 h irrespective of the solid support, and quantitative removal of AII from PAMR and MBHAR occurred in less than 3 h. However, about 10-15 h seemed to be necessary for cleavage of AII from BHAR, and in this extended cleavage reaction a significant increase in peptide degradation rate was observed. Regardless of the cleavage temperature used, the decreasing order of acid stability measured for resins was BHAR>MBHAR>PAMR. Collectively, these findings demonstrated the feasibility of applying TFMSA/TFA solution as a substitute for anhydrous HF at the cleavage step in Boc-SPPS methodology. Care should be taken however, as the cleavage efficacy depends on multiple factors including the resin, peptide sequence, the time and temperature of reaction.

          Related collections

          Author and article information

          Journal
          Chem. Pharm. Bull.
          Chemical & pharmaceutical bulletin
          0009-2363
          0009-2363
          Sep 2001
          : 49
          : 9
          Affiliations
          [1 ] Department of Biophysics, Universidade Federal de São Paulo, SP, Brazil.
          Article
          10.1248/cpb.49.1089
          11558592
          1123af96-3ee5-4a9f-a6ce-46b010811ac7
          History

          Comments

          Comment on this article