20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lysophosphatidic Acid and Glutamatergic Transmission

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Signaling through bioactive lipids regulates nervous system development and functions. Lysophosphatidic acid (LPA), a membrane-derived lipid mediator particularly enriched in brain, is able to induce many responses in neurons and glial cells by affecting key processes like synaptic plasticity, neurogenesis, differentiation and proliferation. Early studies noted sustained elevations of neuronal intracellular calcium, a primary response to LPA exposure, suggesting functional modifications of NMDA and AMPA glutamate receptors. However, the crosstalk between LPA signaling and glutamatergic transmission has only recently been shown. For example, stimulation of presynaptic LPA receptors in hippocampal neurons regulates glutamate release from the presynaptic terminal, and excess of LPA induce seizures. Further evidence indicating a role of LPA in the modulation of neuronal transmission has been inferred from animal models with deficits on LPA receptors, mainly LPA 1 which is the most prevalent receptor in human and mouse brain tissue. LPA 1 null-mice exhibit cognitive and attention deficits characteristic of schizophrenia which are related with altered glutamatergic transmission and reduced neuropathic pain. Furthermore, silencing of LPA 1 receptor in mice induced a severe down-regulation of the main glutaminase isoform (GLS) in cerebral cortex and hippocampus, along with a parallel sharp decrease on active matrix-metalloproteinase 9. The downregulation of both enzymes correlated with an altered morphology of glutamatergic pyramidal cells dendritic spines towards a less mature phenotype, indicating important implications of LPA in synaptic excitatory plasticity which may contribute to the cognitive and memory deficits shown by LPA 1-deficient mice. In this review, we present an updated account of current evidence pointing to important implications of LPA in the modulation of synaptic excitatory transmission.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of neuropathic pain.

          Neuropathic pain refers to pain that originates from pathology of the nervous system. Diabetes, infection (herpes zoster), nerve compression, nerve trauma, "channelopathies," and autoimmune disease are examples of diseases that may cause neuropathic pain. The development of both animal models and newer pharmacological strategies has led to an explosion of interest in the underlying mechanisms. Neuropathic pain reflects both peripheral and central sensitization mechanisms. Abnormal signals arise not only from injured axons but also from the intact nociceptors that share the innervation territory of the injured nerve. This review focuses on how both human studies and animal models are helping to elucidate the mechanisms underlying these surprisingly common disorders. The rapid gain in knowledge about abnormal signaling promises breakthroughs in the treatment of these often debilitating disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment.

            Glutamate is the primary excitatory neurotransmitter in mammalian brain. Disturbances in glutamate-mediated neurotransmission have been increasingly documented in a range of neuropsychiatric disorders including schizophrenia, substance abuse, mood disorders, Alzheimer's disease, and autism-spectrum disorders. Glutamatergic theories of schizophrenia are based on the ability of N-methyl-D-aspartate receptor (NMDAR) antagonists to induce schizophrenia-like symptoms, as well as emergent literature documenting disturbances of NMDAR-related gene expression and metabolic pathways in schizophrenia. Research over the past two decades has highlighted promising new targets for drug development based on potential pre- and postsynaptic, and glial mechanisms leading to NMDAR dysfunction. Reduced NMDAR activity on inhibitory neurons leads to disinhibition of glutamate neurons increasing synaptic activity of glutamate, especially in the prefrontal cortex. Based on this mechanism, normalizing excess glutamate levels by metabotropic glutamate group 2/3 receptor agonists has led to potential identification of the first non-monoaminergic target with comparable efficacy as conventional antipsychotic drugs for treating positive and negative symptoms of schizophrenia. In addition, NMDAR has intrinsic modulatory sites that are active targets for drug development, several of which show promise in preclinical/early clinical trials targeting both symptoms and cognition. To date, most studies have been done with orthosteric agonists and/or antagonists at specific sites. However, allosteric modulators, both positive and negative, may offer superior efficacy with less danger of downregulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD).

              Long-term potentiation and long-term depression (LTP/LTD) can be elicited by activating N-methyl-d-aspartate (NMDA)-type glutamate receptors, typically by the coincident activity of pre- and postsynaptic neurons. The early phases of expression are mediated by a redistribution of AMPA-type glutamate receptors: More receptors are added to potentiate the synapse or receptors are removed to weaken synapses. With time, structural changes become apparent, which in general require the synthesis of new proteins. The investigation of the molecular and cellular mechanisms underlying these forms of synaptic plasticity has received much attention, because NMDA receptor-dependent LTP and LTD may constitute cellular substrates of learning and memory.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                28 May 2019
                2019
                : 12
                : 138
                Affiliations
                [1] 1Departamento de Biología de Sistemas, Edificio de Medicina Universidad de Alcalá , Alcalá de Henares, Spain
                [2] 2Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos , Málaga, Spain
                Author notes

                Edited by: Jaewon Ko, Daegu Gyeongbuk Institute of Science and Technology (DGIST), South Korea

                Reviewed by: Wei Lu, National Institute of Neurological Disorders and Stroke (NINDS), United States; Manikandan Panchatcharam, Louisiana State University Health Sciences Center Shreveport, United States

                *Correspondence: Javier Márquez marquez@ 123456uma.es
                Article
                10.3389/fnmol.2019.00138
                6546900
                31191247
                11294a2a-5717-41f5-aeca-49fa1861e0a0
                Copyright © 2019 Roza, Campos-Sandoval, Gómez-García, Peñalver and Márquez.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 February 2019
                : 10 May 2019
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 98, Pages: 12, Words: 9432
                Categories
                Neuroscience
                Review

                Neurosciences
                lpa,glutamatergic transmission,synaptic plasticity,glutaminases,neuropathic pain
                Neurosciences
                lpa, glutamatergic transmission, synaptic plasticity, glutaminases, neuropathic pain

                Comments

                Comment on this article