Blog
About

15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      On the equivalence of Hopfield Networks and Boltzmann Machines

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A specific type of neural network, the Restricted Boltzmann Machine (RBM), is implemented for classification and feature detection in machine learning. RBM is characterized by separate layers of visible and hidden units, which are able to learn efficiently a generative model of the observed data. We study a "hybrid" version of RBM's, in which hidden units are analog and visible units are binary, and we show that thermodynamics of visible units are equivalent to those of a Hopfield network, in which the N visible units are the neurons and the P hidden units are the learned patterns. We apply the method of stochastic stability to derive the thermodynamics of the model, by considering a formal extension of this technique to the case of multiple sets of stored patterns, which may act as a benchmark for the study of correlated sets. Our results imply that simulating the dynamics of a Hopfield network, requiring the update of N neurons and the storage of N(N-1)/2 synapses, can be accomplished by a hybrid Boltzmann Machine, requiring the update of N+P neurons but the storage of only NP synapses. In addition, the well known glass transition of the Hopfield network has a counterpart in the Boltzmann Machine: It corresponds to an optimum criterion for selecting the relative sizes of the hidden and visible layers, resolving the trade-off between flexibility and generality of the model. The low storage phase of the Hopfield model corresponds to few hidden units and hence a overly constrained RBM, while the spin-glass phase (too many hidden units) corresponds to unconstrained RBM prone to overfitting of the observed data.

          Related collections

          Most cited references 10

          • Record: found
          • Abstract: found
          • Article: not found

          Reducing the dimensionality of data with neural networks.

          High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neural networks and physical systems with emergent collective computational abilities.

             John Hopfield (1982)
            Computational properties of use of biological organisms or to the construction of computers can emerge as collective properties of systems having a large number of simple equivalent components (or neurons). The physical meaning of content-addressable memory is described by an appropriate phase space flow of the state of a system. A model of such a system is given, based on aspects of neurobiology but readily adapted to integrated circuits. The collective properties of this model produce a content-addressable memory which correctly yields an entire memory from any subpart of sufficient size. The algorithm for the time evolution of the state of the system is based on asynchronous parallel processing. Additional emergent collective properties include some capacity for generalization, familiarity recognition, categorization, error correction, and time sequence retention. The collective properties are only weakly sensitive to details of the modeling or the failure of individual devices.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Learning Deep Architectures for AI

               Y Bengio (2009)
                Bookmark

                Author and article information

                Journal
                13 May 2011
                2012-01-10
                Article
                1105.2790

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                Custom metadata
                15 pages, 2 figures
                cond-mat.dis-nn cs.AI

                Comments

                Comment on this article