2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Arid1b haploinsufficiency in parvalbumin- or somatostatin-expressing interneurons leads to distinct ASD-like and ID-like behavior

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inhibitory interneurons are essential for proper brain development and function. Dysfunction of interneurons is implicated in several neurodevelopmental disorders, including autism spectrum disorder (ASD) and intellectual disability (ID). We have previously shown that Arid1b haploinsufficiency interferes with interneuron development and leads to social, cognitive, and emotional impairments consistent with ASD and ID. It is unclear, however, whether interneurons play a major role for the behavioral deficits in Arid1b haploinsufficiency. Furthermore, it is critical to determine which interneuron subtypes contribute to distinct behavioral phenotypes. In the present study, we generated Arid1b haploinsufficient mice in which a copy of the Arid1b gene is deleted in either parvalbumin (PV) or somatostatin (SST) interneurons, and examined their ASD- and ID-like behaviors. We found that Arid1b haploinsufficiency in PV or SST interneurons resulted in distinct features that do not overlap with one another. Arid1b haploinsufficiency in PV neurons contributed to social and emotional impairments, while the gene deletion in the SST population caused stereotypies as well as learning and memory dysfunction. These findings demonstrate a critical role of interneurons in Arid1b haploinsufficient pathology and suggest that PV and SST interneurons may have distinct roles in modulating neurological phenotypes in Arid1b haploinsufficiency-induced ASD and ID.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons.

          An understanding of the diversity of cortical GABAergic interneurons is critical to understand the function of the cerebral cortex. Recent data suggest that neurons expressing three markers, the Ca2+-binding protein parvalbumin (PV), the neuropeptide somatostatin (SST), and the ionotropic serotonin receptor 5HT3a (5HT3aR) account for nearly 100% of neocortical interneurons. Interneurons expressing each of these markers have a different embryological origin. Each group includes several types of interneurons that differ in morphological and electrophysiological properties and likely have different functions in the cortical circuit. The PV group accounts for ∼40% of GABAergic neurons and includes fast spiking basket cells and chandelier cells. The SST group, which represents ∼30% of GABAergic neurons, includes the Martinotti cells and a set of neurons that specifically target layerIV. The 5HT3aR group, which also accounts for ∼30% of the total interneuronal population, is heterogeneous and includes all of the neurons that express the neuropeptide VIP, as well as an equally numerous subgroup of neurons that do not express VIP and includes neurogliaform cells. The universal modulation of these neurons by serotonin and acetylcholine via ionotropic receptors suggests that they might be involved in shaping cortical circuits during specific brain states and behavioral contexts. Copyright © 2010 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interneuron dysfunction in psychiatric disorders.

            Schizophrenia, autism and intellectual disabilities are best understood as spectrums of diseases that have broad sets of causes. However, it is becoming evident that these conditions also have overlapping phenotypes and genetics, which is suggestive of common deficits. In this context, the idea that the disruption of inhibitory circuits might be responsible for some of the clinical features of these disorders is gaining support. Recent studies in animal models demonstrate that the molecular basis of such disruption is linked to specific defects in the development and function of interneurons - the cells that are responsible for establishing inhibitory circuits in the brain. These insights are leading to a better understanding of the causes of schizophrenia, autism and intellectual disabilities, and may contribute to the development of more-effective therapeutic interventions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interneuron cell types are fit to function.

              Understanding brain circuits begins with an appreciation of their component parts - the cells. Although GABAergic interneurons are a minority population within the brain, they are crucial for the control of inhibition. Determining the diversity of these interneurons has been a central goal of neurobiologists, but this amazing cell type has so far defied a generalized classification system. Interneuron complexity within the telencephalon could be simplified by viewing them as elaborations of a much more finite group of developmentally specified cardinal classes that become further specialized as they mature. Our perspective emphasizes that the ultimate goal is to dispense with classification criteria and directly define interneuron types by function.
                Bookmark

                Author and article information

                Contributors
                wkim2@kent.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                12 May 2020
                12 May 2020
                2020
                : 10
                : 7834
                Affiliations
                [1 ]ISNI 0000 0001 0666 4105, GRID grid.266813.8, Department of Pharmacology and Experimental Neuroscience, , University of Nebraska Medical Center, ; Omaha, NE 68198 USA
                [2 ]ISNI 0000 0000 9611 0917, GRID grid.254229.a, Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, , Chungbuk National University, ; Cheongju, 28644 Republic of Korea
                [3 ]ISNI 0000 0001 0656 9343, GRID grid.258518.3, Department of Biological Sciences, , Kent State University, ; Kent, OH 44242 USA
                Author information
                http://orcid.org/0000-0002-1145-402X
                http://orcid.org/0000-0003-3938-6062
                Article
                64066
                10.1038/s41598-020-64066-5
                7217886
                32398858
                112bcafd-ab72-4fd0-860b-745f10d90e23
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 November 2019
                : 6 April 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000065, U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS);
                Award ID: R01NS091220
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                developmental biology,neuroscience
                Uncategorized
                developmental biology, neuroscience

                Comments

                Comment on this article