7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of osmolytes as chemical chaperones during the refolding of aminoacylase.

      Biochemistry and cell biology = Biochimie et biologie cellulaire
      Amidohydrolases, chemistry, metabolism, Anilino Naphthalenesulfonates, pharmacology, Animals, Circular Dichroism, Glycerol, Guanidine, Molecular Chaperones, Osmosis, Proline, Protein Folding, Protein Structure, Quaternary, Spectrometry, Fluorescence, Swine, Time Factors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The refolding and reactivation of aminoacylase is particularly difficult because of serious off-pathway aggregation. The effects of 4 osmolytes--dimethylsulphoxide, glycerol, proline, and sucrose--on the refolding and reactivation of guanidine-denatured aminoacylase were studied by measuring aggregation, enzyme activity, intrinsic fluorescence spectra, 1-anilino-8-naphthalenesulfonate (ANS) fluorescence spectra, and circular dichroism (CD) spectra. The results show that all the osmolytes not only inhibit aggregation but also recover the activity of aminoacylase during refolding in a concentration-dependent manner. In particularly, a 40% glycerol concentration and a 1.5 mol/L sucrose concentration almost completely suppressed the aminoacylase aggregation. The enzyme activity measurements revealed that the influence of glycerol is more significant than that of any other osmolyte. The intrinsic fluorescence results showed that glycerol, proline, and sucrose stabilized the aminoacylase conformation effectively, with glycerol being the most effective. All 4 kinds of osmolytes reduced the exposure of the hydrophobic surface, indicating that osmolytes facilitate the formation of protein hydrophobic collapse. The CD results indicate that glycerol and sucrose facilitate the return of aminoacylase to its native secondary structure. The results of this study suggest that the ability of the various osmolytes to facilitate the refolding and renaturation of aminoacylase is not the same. A survey of the results in the literature, as well as those presented here, suggests that although the protective effect of osmolytes on protein activity and structure is equal for different osmolytes, the ability of osmolytes to facilitate the refolding of various proteins differs from case to case. In all cases, glycerol was found to be the best stabilizer and a folding aid.

          Related collections

          Author and article information

          Comments

          Comment on this article