0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Protein Restriction during Pregnancy Induces Hypertension and Impairs Endothelium-Dependent Vascular Function in Adult Female Offspring

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intrauterine undernutrition plays a role in the development of adult hypertension. Most studies are done in male offspring to delineate the mechanisms whereby blood pressure may be raised; however, the vascular mechanisms involved in female offspring are unclear. Female offspring of pregnant Sprague-Dawley rats fed either a control (C; 18%) or a low-protein (LP; 6%) diet during pregnancy were used. Birth weight and later growth were markedly lower in LP than in C offspring. LP offspring exhibited impaired estrous cyclicity with increased mean arterial pressure. Hypotensive response to acetylcholine (ACh) and the hypertensive response to phenylephrine (PE) were greater in LP than in C rats. N-nitro- L-arginine methyl ester ( L-NAME) induced greater hypertensive responses in C than in LP rats. Endothelium-intact mesenteric arteries from LP offspring exhibited increased contractile responses to PE and reduced vasodilation in response to ACh. In endothelium-denuded arteries, relaxation responses to sodium nitroprusside were similar in both groups. Basal and ACh-induced increase in vascular nitrite/nitrate production was lower in LP than in C offspring. L-NAME or 1H-1,2,4-oxadiazolo-4,3-quinoxalin-1-one inhibited ACh relaxations and enhanced PE contractions in C offspring, but had minimal effect in LP rats. The decreasedNO-mediated vascular response might explainthe increased vascular contraction and arterial pressure infemale offspring with low birth weight.

          Related collections

          Most cited references 34

          • Record: found
          • Abstract: found
          • Article: not found

          Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension.

          Endothelium regulates vascular tone by influencing the contractile activity of vascular smooth muscle. This regulatory effect of the endothelium on blood vessels has been shown to be impaired in atherosclerotic arteries in humans and animals and in animal models of hypertension. To determine whether patients with essential hypertension have an endothelium-dependent abnormality in vascular relaxation, we studied the response of the forearm vasculature to acetylcholine (an endothelium-dependent vasodilator) and sodium nitroprusside (a direct dilator of smooth muscle) in 18 hypertensive patients (mean age [+/- SD], 50.7 +/- 10 years; 10 men and 8 women) two weeks after the withdrawal of antihypertensive medications and in 18 normal controls (mean age, 49.9 +/- 9; 9 men and 9 women). The drugs were infused at increasing concentrations into the brachial artery, and the response in forearm blood flow was measured by strain-gauge plethysmography. The basal forearm blood flow was similar in the patients and controls (mean +/- SD, 3.4 +/- 1.3 and 3.7 +/- 0.8 ml per minute per 100 ml of forearm tissue, respectively; P not significant). The responses of blood flow and vascular resistance to acetylcholine were significantly reduced in the hypertensive patients (P less than 0.0001); maximal forearm flow was 9.1 +/- 5 ml per minute per 100 ml in the patients and 20.0 +/- 8 ml per minute per 100 ml in the controls (P less than 0.0002). However, there were no significant differences between groups in the responses of blood flow and vascular resistance to sodium nitroprusside. Because the vasodilator effect of acetylcholine might also be due to presynaptic inhibition of the release of norepinephrine by adrenergic nerve terminals, the effect of acetylcholine was assessed during phentolamine-induced alpha-adrenergic blockade. Under these conditions, it was also evident that the responses to acetylcholine were significantly blunted in the hypertensive patients (P less than 0.03). Endothelium-mediated vasodilation is impaired in patients with essential hypertension. This defect may play an important part in the functional abnormalities of resistance vessels that are observed in hypertensive patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular and cellular basis of cardiovascular gender differences.

            Cardiovascular diseases (CVDs), the major cause of morbidity and mortality for both men and women, occur uncommonly in premenopausal women, but their incidence rises sharply after the menopausal transition. Cardiovascular gender differences are apparent long before CVDs appear in men and women, and improved understanding of the biology underlying these differences has the potential to advance the diagnosis and treatment of CVDs in both sexes. This review considers gender differences in the molecular and cellular physiology of the heart and blood vessels in health and disease, highlighting understudied areas that can help resolve the current controversy regarding hormone replacement therapy and improve cardiovascular health in women.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis.

              Modest maternal protein restriction leads to hypertension and a reduced number of glomeruli in adult male but not female offspring. This study determined whether a more severe protein restriction has equivalent effects on male and female rat offspring, and examined the role of nephrogenesis in this programming. Sprague-Dawley rats were fed a protein-restricted (5% protein) diet throughout (LLP), or during the first (LLP/NP) or second (NP/LLP) half of pregnancy. Controls ate a normal diet (NP, 19% protein). Adult offspring were chronically instrumented at 22 weeks; glomerular number and volume were estimated using stereologic techniques. Mean arterial pressures in male offspring were significantly higher in LLP (136 +/- 2 mm Hg) or NP/LLP (137 +/- 2 mm Hg) than in LLP/NP (125 +/- 1 mm Hg) or NP (125 +/- 2 mm Hg). Moreover, the hypertension was salt-sensitive (increase of 16 +/- 4 mm Hg in LLP on a high Na(+) diet compared to 2 +/- 2 mm Hg in NP). Glomerular number (per kidney) was reduced (15,400 +/- 2,411 in LLP vs. 27,208 +/- 1,534 in NP) but average individual glomerular volume was not different (1.98 +/- 0.18 106 micro(3) in LLP vs. 2.01 +/- 0.14 106 micro(3) in NP). Female offspring showed qualitatively similar results. Severe maternal dietary protein restriction reduces glomerular number and programs for salt-sensitive adult hypertension in both female and male offspring. The window of sensitivity of adult blood pressure to prenatal protein restriction falls within the period of nephrogenesis in the rat. These data are consistent with the hypothesis that maternal protein restriction causes adult hypertension in the offspring through impairment of renal development.
                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2009
                April 2009
                30 October 2008
                : 46
                : 3
                : 229-239
                Affiliations
                Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Tex., USA
                Article
                166390 PMC2860528 J Vasc Res 2009;46:229–239
                10.1159/000166390
                PMC2860528
                18957856
                © 2008 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 7, Tables: 2, References: 68, Pages: 11
                Categories
                Research Paper

                Comments

                Comment on this article