According to evidence from our laboratory, acidic surfaces on atmospheric aerosols lead to potentially multifold increases in secondary organic aerosol (SOA) mass. Experimental observations using a multichannel flow reactor, Teflon (polytetrafluoroethylene) film bag batch reactors, and outdoor Teflon-film smog chambers strongly confirm that inorganic acids, such as sulfuric acid, catalyze particle-phase heterogeneous reactions of atmospheric organic carbonyl species. The net result is a large increase in SOA mass and stabilized organic layers as particles age. If acid-catalyzed heterogeneous reactions of SOA products are included in current models, the predicted SOA formation will be much greater and could have a much larger impact on climate forcing effects than we now predict.