+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prevalence of Sodalis glossinidius and different trypanosome species in Glossina palpalis palpalis caught in the Fontem sleeping sickness focus of the southern Cameroon Translated title: Prévalence de Sodalis glossinidius et de différentes espèces de trypanosomes chez Glossina palpalis palpalis capturé dans le foyer de la maladie du sommeil de Fontem, Sud Cameroun

      1 , 2 , 3 , 1 , *


      EDP Sciences

      Glossina palpalis palpalis, Symbiont, Sodalis glossinidius, Trypanosoma Sp , PCR

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Tsetse flies are the cyclical vector of human and animal African trypanosomiasis. To improve vector control in order to achieve the elimination of human African trypanosomiasis (HAT) and boost the control of animal diseases, investigations have been undertaken on the tripartite association between tsetse, trypanosome, and symbionts. It is in this light that Sodalis glossinidius and different trypanosomes were identified in Glossina palpalis palpalis caught in Fontem in southern Cameroon. For this study, DNA was extracted from whole flies, and S. glossinidius and different trypanosome species were identified by polymerase chain reaction (PCR). Statistical analyses were performed to compare the trypanosome and S. glossinidius infection rates and to look for an association between these microorganisms. Of the 274 G. p. palpalis caught, 3.3% (9/274) were teneral. About 35% (96/274) of these flies harbored S. glossinidius. Of the 265 non-teneral flies, 37.7% were infected by trypanosomes. The infection rates of Trypanosoma congolense “forest type” and Trypanosoma vivax were 26.04% and 18.11%, respectively. About 6.41% of tsetse harbored mixed infections of T. congolense and T. vivax. Of the 69 tsetse with T. congolense infections, 33.33% (23/69) harbored S. glossinidius while 71.86% (69/96) of flies harboring S. glossinidius were not infected by trypanosomes. No association was observed between S. glossinidius and trypanosome infections. Some wild tsetse harbor S. glossinidius and trypanosomes, while others have no infection or are infected by only one of these microorganisms. We conclude that the presence of S. glossinidius does not favor trypanosome infections in G. p. palpalis of the Fontem focus.

          Translated abstract

          La mouche tsé-tsé est le vecteur cyclique de la trypanosomiase humaine et de la plupart des trypanosomiases africaines animales. Pour améliorer la lutte antivectorielle afin d’éliminer la trypanosomiase humaine africaine et renforcer le contrôle des maladies animales, des études ont été entreprises sur l’association tripartite entre la mouche tsé-tsé, le trypanosome et les symbiotes. C’est dans cette optique que l’identification moléculaire de Sodalis glossinidius et de différentes espèces de trypanosomes a été réalisée chez Glossina palpalis palpalis capturé à Fontem dans le sud Cameroun. Pour cette étude, l’ADN a été extrait de la glossine entière et S. glossinidius et différentes espèces de trypanosomes ont été identifiés par PCR. Des analyses statistiques ont été réalisées pour comparer les taux d’infections des trypanosomes et de S. glossinidius et rechercher une association entre les deux microorganismes. Sur les 274 G. p. palpalis capturés, 3.3 % (9/274) étaient des mouches ténérales. Environ 35 % (96/274) de ces glossines abritaient S. glossinidius. Sur les 265 mouches non ténérales, 37.7 % étaient infectées par au moins une espèce de trypanosome. Les taux d’infection de T. congolense « type forêt » et T. vivax étaient respectivement de 26.04 % et 18.11 %. Près de 6.41 % des mouches tsé-tsé présentaient une infection mixte impliquant T. congolense « type forêt » et T. vivax. Sur les 69 glossines infectées par Trypanosoma congolense, 33.33 % hébergeaient S. glossinidius tandis que 71.86 % (69/96) des mouches hébergeant S. glossinidius n’avaient aucune infection trypanosomienne. Aucune association n’a été observée entre S. glossinidius et les infections trypanosomiennes. Certaines mouches tsé-tsé abritent S. glossinidius et des trypanosomes alors que d’autres n’ont aucune infection ou sont infectées par un seul de ces deux micro-organismes. Nous conclueons que dans le foyer de la maladie du sommeil de Fontem, la présence de S. glossinidius ne favorise pas les infections trypanosomiennes chez G. p. palpalis.

          Related collections

          Most cited references 38

          • Record: found
          • Abstract: found
          • Article: not found

          Detection of Trypanosoma congolense and Trypanosoma brucei subspecies by DNA amplification using the polymerase chain reaction.

          The nuclear DNA of Trypanosoma congolense contains a family of highly conserved 369 base pair (bp) repeats. The sequences of three cloned copies of these repeats were determined. An unrelated family of 177 bp repeats has previously been shown to occur in the nuclear DNA of Trypanosoma brucei brucei (Sloof et al. 1983a). Oligonucleotides were synthesized which prime the specific amplification of each of these repetitive DNAs by the polymerase chain reaction (PCR). Amplification of 10% of the DNA in a single parasite of T. congolense or T. brucei spp. produced sufficient amplified product to be visible as a band in an agarose gel stained with ethidium bromide. This level of detection, which does not depend on the use of radioactivity, is about 100 times more sensitive than previous detection methods based on radioactive DNA probes. The oligonucleotides did not prime the amplification of DNA sequences in other trypanosome species nor in Leishmania, mouse or human DNAs. Amplification of DNA from the blood of animals infected with T. congolense and/or T. brucei spp. permitted the identification of parasite levels far below that detectable by microscopic inspection. Since PCR amplification can be conducted on a large number of samples simultaneously, it is ideally suited for large-scale studies on the prevalence of African trypanosomes in both mammalian blood and insect vectors.
            • Record: found
            • Abstract: found
            • Article: not found

            Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story.

            Melarsoprol and pentamidine represent the two main classes of drugs, the arsenicals and diamidines, historically used to treat the diseases caused by African trypanosomes: sleeping sickness in humans and Nagana in livestock. Cross-resistance to these drugs was first observed over 60 years ago and remains the only example of cross-resistance among sleeping sickness therapies. A Trypanosoma brucei adenosine transporter is well known for its role in the uptake of both drugs. More recently, aquaglyceroporin 2 (AQP2) loss of function was linked to melarsoprol-pentamidine cross-resistance. AQP2, a channel that appears to facilitate drug accumulation, may also be linked to clinical cases of resistance. Here, we review these findings and consider some new questions as well as future prospects for tackling the devastating diseases caused by these parasites. Copyright © 2013 Elsevier Ltd. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: not found

              Human African trypanosomiasis of the CNS: current issues and challenges.

              Human African trypanosomiasis (HAT), also known as sleeping sickness, is a major cause of mortality and morbidity in sub-Saharan Africa. Current therapy with melarsoprol for CNS HAT has unacceptable side-effects with an overall mortality of 5%. This review discusses the issues of diagnosis and staging of CNS disease, its neuropathogenesis, and the possibility of new therapies for treating late-stage disease.

                Author and article information

                EDP Sciences
                17 August 2018
                : 25
                : ( publisher-idID: parasite/2018/01 )
                [1 ] Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang Dschang Cameroon
                [2 ] Mission Spéciale d’Éradication des Glossines, Division Régionale Tsé-Tsé Adamaoua B.P. 263 Ngaoundéré Cameroon
                [3 ] Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I Yaoundé Cameroon
                Author notes
                [* ]Corresponding author: gsimoca@ 123456yahoo.fr
                parasite180042 10.1051/parasite/2018044
                © S. Kanté Tagueu et al., published by EDP Sciences, 2018

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Page count
                Figures: 1, Tables: 4, Equations: 0, References: 43, Pages: 8
                Research Article


                Comment on this article