49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Modulation of host cell responses and evasion strategies for porcine reproductive and respiratory syndrome virus

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The immune surveillance system protects host cells from viral infection, and viruses have evolved to escape this system for efficient proliferation in the host. Host cells produce cytokines and chemokines in response to viral infection, and among such effector molecules, type I interferons are the principal antiviral cytokines and therefore effective targets for viruses to disarm host surveillance. Porcine reproductive and respiratory syndrome virus (PRRSV) expresses proteins that circumvent the IFN response and other cellular processes, and to compensate the small coding capacity of PRRSV, these proteins are multifunctional. To date, at least four viral proteins have been identified and studied as viral antagonists of host defenses: N as a structural protein and three non-structural proteins, Nsp1 (Nsp1α and Nsp1β), Nsp2, and Nsp11. Among these, N and Nsp1 are nuclear-cytoplasmic proteins distributed in both the nucleus and cytoplasm of cells. Nsp1 and Nsp2 are viral proteases while Nsp11 is an endoribonuclease. This review describes the current understanding of the role of these proteins in modulating the host innate immune responses. Blocking against virus-mediated inhibition of the innate response may lead to the future development of effective vaccines. The understanding of viral mechanisms modulating the normal cellular processes will be a key to the design of an effective control strategy for PRRS.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures.

          The interferon (IFN) system is an extremely powerful antiviral response that is capable of controlling most, if not all, virus infections in the absence of adaptive immunity. However, viruses can still replicate and cause disease in vivo, because they have some strategy for at least partially circumventing the IFN response. We reviewed this topic in 2000 [Goodbourn, S., Didcock, L. & Randall, R. E. (2000). J Gen Virol 81, 2341-2364] but, since then, a great deal has been discovered about the molecular mechanisms of the IFN response and how different viruses circumvent it. This information is of fundamental interest, but may also have practical application in the design and manufacture of attenuated virus vaccines and the development of novel antiviral drugs. In the first part of this review, we describe how viruses activate the IFN system, how IFNs induce transcription of their target genes and the mechanism of action of IFN-induced proteins with antiviral action. In the second part, we describe how viruses circumvent the IFN response. Here, we reflect upon possible consequences for both the virus and host of the different strategies that viruses have evolved and discuss whether certain viruses have exploited the IFN response to modulate their life cycle (e.g. to establish and maintain persistent/latent infections), whether perturbation of the IFN response by persistent infections can lead to chronic disease, and the importance of the IFN system as a species barrier to virus infections. Lastly, we briefly describe applied aspects that arise from an increase in our knowledge in this area, including vaccine design and manufacture, the development of novel antiviral drugs and the use of IFN-sensitive oncolytic viruses in the treatment of cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter.

            Most paramyxoviruses circumvent the IFN response by blocking IFN signaling and limiting the production of IFN by virus-infected cells. Here we report that the highly conserved cysteine-rich C-terminal domain of the V proteins of a wide variety of paramyxoviruses binds melanoma differentiation-associated gene 5 (mda-5) product. mda-5 is an IFN-inducible host cell DExD/H box helicase that contains a caspase recruitment domain at its N terminus. Overexpression of mda-5 stimulated the basal activity of the IFN-beta promoter in reporter gene assays and significantly enhanced the activation of the IFN-beta promoter by intracellular dsRNA. Both these activities were repressed by coexpression of the V proteins of simian virus 5, human parainfluenza virus 2, mumps virus, Sendai virus, and Hendra virus. Similar results to the reporter assays were obtained by measuring IFN production. Inhibition of mda-5 by RNA interference or by dominant interfering forms of mda-5 significantly inhibited the activation of the IFN-beta promoter by dsRNA. It thus appears that mda-5 plays a central role in an intracellular signal transduction pathway that can lead to the activation of the IFN-beta promoter, and that the V proteins of paramyxoviruses interact with mda-5 to block its activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An atomic model of the interferon-beta enhanceosome.

              Transcriptional activation of the interferon-beta (IFN-beta) gene requires assembly of an enhanceosome containing ATF-2/c-Jun, IRF-3/IRF-7, and NFkappaB. These factors bind cooperatively to the IFN-beta enhancer and recruit coactivators and chromatin-remodeling proteins to the IFN-beta promoter. We describe here a crystal structure of the DNA-binding domains of IRF-3, IRF-7, and NFkappaB, bound to one half of the enhancer, and use a previously described structure of the remaining half to assemble a complete picture of enhanceosome architecture in the vicinity of the DNA. Association of eight proteins with the enhancer creates a continuous surface for recognizing a composite DNA-binding element. Paucity of local protein-protein contacts suggests that cooperative occupancy of the enhancer comes from both binding-induced changes in DNA conformation and interactions with additional components such as CBP. Contacts with virtually every nucleotide pair account for the evolutionary invariance of the enhancer sequence.
                Bookmark

                Author and article information

                Contributors
                Journal
                Virus Res
                Virus Res
                Virus Research
                Elsevier B.V.
                0168-1702
                1872-7492
                23 July 2010
                December 2010
                23 July 2010
                : 154
                : 1
                : 48-60
                Affiliations
                [a ]Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
                [b ]Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
                Author notes
                [* ]Corresponding author. Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA. Tel.: +1 217 244 9120; fax: +1 217 244 7421. dyoo@ 123456illinois.edu
                [1]

                Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, PA, USA.

                Article
                S0168-1702(10)00246-7
                10.1016/j.virusres.2010.07.019
                7114477
                20655963
                11446a3a-64ff-4966-b2ec-9e83a7ef6a34
                Copyright © 2010 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 19 April 2010
                : 24 June 2010
                : 18 July 2010
                Categories
                Article

                Microbiology & Virology
                prrsv,interferons,immune evasion,immune modulation,nf-κb,cbp degradation,irf3,pias,nucleocapsid,non-structural proteins,arterivirus

                Comments

                Comment on this article