7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Runx-mediated regulation of CCL5 via antagonizing two enhancers influences immune cell function and anti-tumor immunity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CCL5 is a unique chemokine with distinct stage and cell-type specificities for regulating inflammation, but how these specificities are achieved and how CCL5 modulates immune responses is not well understood. Here we identify two stage-specific enhancers: the proximal enhancer mediates the constitutive CCL5 expression during the steady state, while the distal enhancer located 1.35 Mb from the promoter induces CCL5 expression in activated cells. Both enhancers are antagonized by RUNX/CBFβ complexes, and SATB1 further mediates the long-distance interaction of the distal enhancer with the promoter. Deletion of the proximal enhancer decreases CCL5 expression and augments the cytotoxic activity of tissue-resident T and NK cells, which coincides with reduced melanoma metastasis in mouse models. By contrast, increased CCL5 expression resulting from RUNX3 mutation is associated with more tumor metastasis in the lung. Collectively, our results suggest that RUNX3-mediated CCL5 repression is critical for modulating anti-tumor immunity.

          Abstract

          CCL5 is an important chemokine for modulation of inflammatory responses, but how CCL5 expression is regulated is still unclear. Here the authors show that the CCL5 locus contains two enhancers, with the proximal enhancer being responsible for homeostatic expression and the distal enhancer enforcing inducibility, while both enhancers are modulated by RUNX3.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control

          Summary Conventional type 1 dendritic cells (cDC1) are critical for antitumor immunity, and their abundance within tumors is associated with immune-mediated rejection and the success of immunotherapy. Here, we show that cDC1 accumulation in mouse tumors often depends on natural killer (NK) cells that produce the cDC1 chemoattractants CCL5 and XCL1. Similarly, in human cancers, intratumoral CCL5, XCL1, and XCL2 transcripts closely correlate with gene signatures of both NK cells and cDC1 and are associated with increased overall patient survival. Notably, tumor production of prostaglandin E2 (PGE2) leads to evasion of the NK cell-cDC1 axis in part by impairing NK cell viability and chemokine production, as well as by causing downregulation of chemokine receptor expression in cDC1. Our findings reveal a cellular and molecular checkpoint for intratumoral cDC1 recruitment that is targeted by tumor-derived PGE2 for immune evasion and that could be exploited for cancer therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment.

            Despite the frequent detection of circulating tumor antigen-specific T cells, either spontaneously or following active immunization or adoptive transfer, immune-mediated cancer regression occurs only in the minority of patients. One theoretical rate-limiting step is whether effector T cells successfully migrate into metastatic tumor sites. Affymetrix gene expression profiling done on a series of metastatic melanoma biopsies revealed a major segregation of samples based on the presence or absence of T-cell-associated transcripts. The presence of lymphocytes correlated with the expression of defined chemokine genes. A subset of six chemokines (CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL10) was confirmed by protein array and/or quantitative reverse transcription-PCR to be preferentially expressed in tumors that contained T cells. Corresponding chemokine receptors were found to be up-regulated on human CD8(+) effector T cells, and transwell migration assays confirmed the ability of each of these chemokines to promote migration of CD8(+) effector cells in vitro. Screening by chemokine protein array identified a subset of melanoma cell lines that produced a similar broad array of chemokines. These melanoma cells more effectively recruited human CD8(+) effector T cells when implanted as xenografts in nonobese diabetic/severe combined immunodeficient mice in vivo. Chemokine blockade with specific antibodies inhibited migration of CD8(+) T cells. Our results suggest that lack of critical chemokines in a subset of melanoma metastases may limit the migration of activated T cells, which in turn could limit the effectiveness of antitumor immunity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CD69: from activation marker to metabolic gatekeeper.

              CD69 is a membrane-bound, type II C-lectin receptor. It is a classical early marker of lymphocyte activation due to its rapid appearance on the surface of the plasma membrane after stimulation. CD69 is expressed by several subsets of tissue resident immune cells, including resident memory T (TRM) cells and gamma delta (γδ) T cells, and is therefore considered a marker of tissue retention. Recent evidence has revealed that CD69 regulates some specific functions of selected T-cell subsets, determining the migration-retention ratio as well as the acquisition of effector or regulatory phenotypes. Specifically, CD69 regulates the differentiation of regulatory T (Treg) cells as well as the secretion of IFN-γ, IL-17 and IL-22. The identification of putative CD69 ligands, such as Galectin-1 (Gal-1), suggests that CD69-induced signaling can be regulated not only during cognate contacts between T cells and antigen-presenting cells in lymphoid organs, but also in the periphery, where cytokines and other metabolites control the final outcome of the immune response. Here, we will discuss new aspects of the molecular signaling mediated by CD69, and its involvement in the metabolic reprogramming regulating TH-effector lineages and provide their ramifications and possible significance in homeostasis and pathological scenarios. This article is protected by copyright. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                wooseok.seo@riken.jp
                ichiro.taniuchi@riken.jp
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                26 March 2020
                26 March 2020
                2020
                : 11
                : 1562
                Affiliations
                [1 ]Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
                [2 ]Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
                [3 ]ISNI 0000 0001 2297 6811, GRID grid.266102.1, Department of Orofacial Sciences, , University of California, ; San Francisco, CA 94143 USA
                [4 ]ISNI 0000 0001 0943 978X, GRID grid.27476.30, Present Address: Department of Immunology, , Nagoya University Graduate School of Medicine, ; Showa-ku Tsurumai-Cho 65, Nagoya, 466-8550 Japan
                Author information
                http://orcid.org/0000-0001-6279-166X
                http://orcid.org/0000-0002-9263-8831
                http://orcid.org/0000-0002-9853-9068
                Article
                15375
                10.1038/s41467-020-15375-w
                7099032
                32218434
                11494622-8b51-4a7a-b996-5c87d676ecd6
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 29 August 2019
                : 9 March 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001691, MEXT | Japan Society for the Promotion of Science (JSPS);
                Award ID: 21229008
                Award ID: 15K08535
                Award ID: 18K07186
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                tumour immunology,chemokines,gene regulation in immune cells,lymphocytes
                Uncategorized
                tumour immunology, chemokines, gene regulation in immune cells, lymphocytes

                Comments

                Comment on this article