41
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fungal diseases: could nanostructured drug delivery systems be a novel paradigm for therapy?

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Invasive mycoses are a major problem for immunocompromised individuals and patients in intensive care units. Morbidity and mortality rates of these infections are high because of late diagnosis and delayed treatment. Moreover, the number of available antifungal agents is low, and there are problems with toxicity and resistance. Alternatives for treating invasive fungal infections are necessary. Nanostructured systems could be excellent carriers for antifungal drugs, reducing toxicity and targeting their action. The use of nanostructured systems for antifungal therapy began in the 1990s, with the appearance of lipid formulations of amphotericin B. This review encompasses different antifungal drug delivery systems, such as liposomes, carriers based on solid lipids and nanostructure lipids, polymeric nanoparticles, dendrimers, and others. All these delivery systems have advantages and disadvantages. Main advantages are the improvement in the antifungal properties, such as bioavailability, reduction in toxicity, and target tissue, which facilitates innovative therapeutic techniques. Conversely, a major disadvantage is the high cost of production. In the near future, the use of nanosystems for drug delivery strategies can be used for delivering peptides, including mucoadhesive systems for the treatment of oral and vaginal candidiasis.

          Most cited references183

          • Record: found
          • Abstract: found
          • Article: not found

          Aspergillosis case-fatality rate: systematic review of the literature.

          To update the case-fatality rate (CFR) associated with invasive aspergillosis according to underlying conditions, site of infection, and antifungal therapy, data were systematically reviewed and pooled from clinical trials, cohort or case-control studies, and case series of >/=10 patients with definite or probable aspergillosis. Subjects were 1941 patients described in studies published after 1995 that provided sufficient outcome data; cases included were identified by MEDLINE and EMBASE searches. The main outcome measure was the CFR. Fifty of 222 studies met the inclusion criteria. The overall CFR was 58%, and the CFR was highest for bone marrow transplant recipients (86.7%) and for patients with central nervous system or disseminated aspergillosis (88.1%). Amphotericin B deoxycholate and lipid formulations of amphotericin B failed to prevent death in one-half to two-thirds of patients. Mortality is high despite improvements in diagnosis and despite the advent of newer formulations of amphotericin B. Underlying patient conditions and the site of infection remain important prognostic factors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amphotericin B formulations: a comparative review of efficacy and toxicity.

            Because of the increasing prevalence and changing microbiological spectrum of invasive fungal infections, some form of amphotericin B still provides the most reliable and broad spectrum therapeutic alternative. However, the use of amphotericin B deoxycholate is accompanied by dose-limited toxicities, most importantly, infusion-related reactions and nephrotoxicity. In an attempt to improve the therapeutic index of amphotericin B, three lipid-associated formulations were developed, including amphotericin B lipid complex (ABLC), liposomal amphotericin B (L-AmB), and amphotericin B colloidal dispersion (ABCD). The lipid composition of all three of these preparations differs considerably and contributes to substantially different pharmacokinetic parameters. ABLC is the largest of the lipid preparations. Because of its size, it is taken up rapidly by macrophages and becomes sequestered in tissues of the mononuclear phagocyte system such as the liver and spleen. Consequently, compared with the conventional formulation, it has lower circulating amphotericin B serum concentrations, reflected in a marked increase in volume of distribution and clearance. Lung levels are considerably higher than those achieved with other lipid-associated preparations. The recommended therapeutic dose of ABLC is 5 mg/kg/day. Because of its small size and negative charge, L-AmB avoids substantial recognition and uptake by the mononuclear phagocyte system. Therefore, a single dose of L-AmB results in a much higher peak plasma level (Cmax) than conventional amphotericin B deoxycholate and a much larger area under the concentration-time curve. Tissue concentrations in patients receiving L-AmB tend to be highest in the liver and spleen and much lower in kidneys and lung. Recommended therapeutic dosages are 3-6 mg/kg/day. After intravenous infusion, ABCD complexes remain largely intact and are rapidly removed from the circulation by cells of the macrophage phagocyte system. On a milligram-to-milligram basis, the Cmax achieved is lower than that attained by conventional amphotericin B, although the larger doses of ABCD that are administered produce an absolute level that is similar to amphotericin B. ABCD exhibits dose-limiting, infusion-related toxicities; consequently, the administered dosages should not exceed 3-4 mg/kg/day. The few comparative clinical trials that have been completed with the lipid-associated formulations have not demonstrated important clinical differences among these agents and amphotericin B for efficacy, although there are significant safety benefits of the lipid products. Furthermore, only one published trial has ever compared one lipid product against another for any indication. The results of these trials are particularly difficult to interpret because of major heterogeneities in study design, disease definitions, drug dosages, differences in clinical and microbiological endpoints as well as specific outcomes examined. Nevertheless, it is possible to derive some general conclusions given the available data. The most commonly studied syndrome has been empiric therapy for febrile neutropenic patients, where the lipid-associated preparations did not appear to provide a survival benefit over conventional amphotericin B deoxycholate, but did offer a significant advantage for the prevention of various breakthrough invasive fungal infections. For treatment of documented invasive fungal infections that usually involved hematological malignancy patients, no individual randomized trial has demonstrated a mortality benefit due to therapy with one of the lipid formulations. Results from meta-analyses have been contradictory, with one demonstrating a mortality benefit from all-cause mortality and one that did not demonstrate a mortality benefit. In the only published study to examine HIV-infected patients with disseminated histoplasmosis, clinical success and mortality were significantly better with L-AmB compared with amphotericin B deoxycholate; there were no differences in microbiological outcomes between treatment groups. The lipid-associated preparations were not significantly better than amphotericin B deoxycholate for treatment of AIDS-associated acute cryptococcal meningitis for either clinical or microbiological outcomes that were studied. In all of the trials that specifically examined renal toxicity, the lipid-associated formulations were significantly less nephrotoxic than amphotericin B deoxycholate. Infusion-related reactions occurred less frequently with L-AmB when compared with amphotericin B deoxycholate; however, ABCD had equivalent or more frequent infusion-related reactions than conventional amphotericin B, and this resulted in the cessation of at least one clinical trial. At the present time, this particular lipid formulation is no longer commercially available. For the treatment of most invasive fungal infections, an amphotericin B lipid formulation provides a safer alternative than conventional amphotericin B, with at least equivalent efficacy. As the cost of therapy with these agents continues to decline, these drugs will likely maintain their important role in the antifungal drug armamentarium because of their efficacy and improved safety profile.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications.

              Dendrimers are members of a versatile, fourth new class of polymer architecture (i.e. dendritic polymers after traditional linear, crosslinked and branched types). Typically, dendrimers are used as well-defined scaffolding or nanocontainers to conjugate, complex or encapsulate therapeutic drugs or imaging moieties. As a delivery vector, the dendrimer conjugate linker or spacer chemistry plays a crucial part in determining optimum drug delivery to disease sites by conserving active drug efficacy while influencing appropriate release patterns. This review focuses on several crucial issues related to those dendrimer features, namely the role of dendrimers as nanoscaffolding and nanocontainers, crucial principles that might be invoked for improving dendrimer cytotoxicity properties, understanding dendrimer cellular transport mechanisms and the exciting role of dendrimers as high-contrast MRI imaging agents. The review concludes with a brief survey of translational efforts from research and development phases to clinical trials that are actively emerging. 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2016
                08 August 2016
                : 11
                : 3715-3730
                Affiliations
                [1 ]Department of Drugs and Medicines, Faculty of Pharmaceutical Sciences, Univ. Estadual Paulista, Araraquara, Sao Paulo, Brazil
                [2 ]Immunology, Microbiology, and Parasitology Department, Facultad de Medicina y Odontología, Universidad del País Vasco, Bilbao, Spain
                [3 ]Department of Clinical Analysis, Faculdade de Ciências Farmacêuticas, Univ. Estadual Paulista, Araraquara, Sao Paulo, Brazil
                Author notes
                Correspondence: Marlus Chorilli; Ana Marisa Fusco-Almeida, Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Univ. Estadual Paulista, Rodovia Araraquara-Jaú, Km 1, Campus Araraquara, 14800-850 Araraquara, São Paulo, Brazil, Tel +55 16 3301 6998, Fax +55 16 3301 6960, Email chorilli@ 123456fcfar.unesp.br ; ana.marisa@ 123456uol.com.br
                Article
                ijn-11-3715
                10.2147/IJN.S93105
                4982498
                27540288
                1151d28b-f4d3-4c2a-a5de-aa4903e4d150
                © 2016 Voltan et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Molecular medicine
                fungal diseases,antifungal agents,amphotericin b,azoles,nanoparticles,nanotech nology

                Comments

                Comment on this article