11
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Duplex real-time PCR assay for the simultaneous detection of Ophiostoma novo-ulmi and Geosmithia spp. in elm wood and insect vectors

      , , ,
      NeoBiota
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dutch elm disease (DED) is a destructive tracheomycosis caused by Ophiostoma novo-ulmi, an ascomycete probably originating in East-Asia that is devastating natural elm populations throughout Europe, North America and Asia. The fungus is mainly spread by elm bark beetles that complete their life cycle between healthy and diseased elms. Recently, it has been highlighted that some fungi of the genus Geosmithia, which are similarly well associated with bark beetles, seem to also play a role in the DED pathosystem acting as mycoparasites of O. novo-ulmi. Although some relationship between the fungi is clear, the biological cycle of Geosmithia spp. within the DED cycle is still partly unclear, as is the role of Geosmithia spp. in association with the bark beetles. In this work, we tried to clarify these aspects by developing a qPCR duplex TaqMan assay to detect and quantify DNA of both fungi. The assay is extremely sensitive showing a limit of detection as low as 2 fg μl–1 for both fungi. We collected woody samples from healthy and infected elm trees throughout the beetle life cycle. All healthy elm samples were negative for both Geosmithia spp. and O. novo-ulmi DNA. Geosmithia spp. are never present in infected, but living trees, while they are present in frass of elm bark beetles (EBB – Scolytus spp.) and at each stage of the EBB life cycle in much higher quantities than O. novo-ulmi. This work provides a better understanding of the role and interactions occurring amongst the main players of the DED pathosystem.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: not found
          • Article: not found

          STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT

            • Record: found
            • Abstract: found
            • Article: not found

            The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments.

            Currently, a lack of consensus exists on how best to perform and interpret quantitative real-time PCR (qPCR) experiments. The problem is exacerbated by a lack of sufficient experimental detail in many publications, which impedes a reader's ability to evaluate critically the quality of the results presented or to repeat the experiments. The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines target the reliability of results to help ensure the integrity of the scientific literature, promote consistency between laboratories, and increase experimental transparency. MIQE is a set of guidelines that describe the minimum information necessary for evaluating qPCR experiments. Included is a checklist to accompany the initial submission of a manuscript to the publisher. By providing all relevant experimental conditions and assay characteristics, reviewers can assess the validity of the protocols used. Full disclosure of all reagents, sequences, and analysis methods is necessary to enable other investigators to reproduce results. MIQE details should be published either in abbreviated form or as an online supplement. Following these guidelines will encourage better experimental practice, allowing more reliable and unequivocal interpretation of qPCR results.
              • Record: found
              • Abstract: found
              • Article: not found

              The real-time polymerase chain reaction.

              The scientific, medical, and diagnostic communities have been presented the most powerful tool for quantitative nucleic acids analysis: real-time PCR [Bustin, S.A., 2004. A-Z of Quantitative PCR. IUL Press, San Diego, CA]. This new technique is a refinement of the original Polymerase Chain Reaction (PCR) developed by Kary Mullis and coworkers in the mid 80:ies [Saiki, R.K., et al., 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia, Science 230, 1350], for which Kary Mullis was awarded the 1993 year's Nobel prize in Chemistry. By PCR essentially any nucleic acid sequence present in a complex sample can be amplified in a cyclic process to generate a large number of identical copies that can readily be analyzed. This made it possible, for example, to manipulate DNA for cloning purposes, genetic engineering, and sequencing. But as an analytical technique the original PCR method had some serious limitations. By first amplifying the DNA sequence and then analyzing the product, quantification was exceedingly difficult since the PCR gave rise to essentially the same amount of product independently of the initial amount of DNA template molecules that were present. This limitation was resolved in 1992 by the development of real-time PCR by Higuchi et al. [Higuchi, R., Dollinger, G., Walsh, P.S., Griffith, R., 1992. Simultaneous amplification and detection of specific DNA-sequences. Bio-Technology 10(4), 413-417]. In real-time PCR the amount of product formed is monitored during the course of the reaction by monitoring the fluorescence of dyes or probes introduced into the reaction that is proportional to the amount of product formed, and the number of amplification cycles required to obtain a particular amount of DNA molecules is registered. Assuming a certain amplification efficiency, which typically is close to a doubling of the number of molecules per amplification cycle, it is possible to calculate the number of DNA molecules of the amplified sequence that were initially present in the sample. With the highly efficient detection chemistries, sensitive instrumentation, and optimized assays that are available today the number of DNA molecules of a particular sequence in a complex sample can be determined with unprecedented accuracy and sensitivity sufficient to detect a single molecule. Typical uses of real-time PCR include pathogen detection, gene expression analysis, single nucleotide polymorphism (SNP) analysis, analysis of chromosome aberrations, and most recently also protein detection by real-time immuno PCR.

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                NeoBiota
                NB
                Pensoft Publishers
                1314-2488
                1619-0033
                May 18 2023
                May 18 2023
                : 84
                : 247-266
                Article
                10.3897/neobiota.84.90843
                1156dccf-2650-459a-8a7f-9d75892ac983
                © 2023

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                Related Documents Log