20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A large light-mass component of cosmic rays at 1017–1017.5 electronvolts from radio observations

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Nature
      Springer Science and Business Media LLC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 10(17)-10(18) electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies. Cosmic rays initiate air showers--cascades of secondary particles in the atmosphere-and their masses can be inferred from measurements of the atmospheric depth of the shower maximum (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground. Current measurements have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays is a rapidly developing technique for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 10(17)-10(17.5) electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 10(17.5) electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 10(17)-10(17.5) electronvolt range.

          Related collections

          Author and article information

          Journal
          Nature
          Nature
          Springer Science and Business Media LLC
          0028-0836
          1476-4687
          March 2016
          March 2 2016
          March 2016
          : 531
          : 7592
          : 70-73
          Article
          10.1038/nature16976
          26935696
          115a9d52-f271-450f-afa0-1e4180501142
          © 2016

          http://www.springer.com/tdm

          History

          Comments

          Comment on this article