1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exceptional energy absorption characteristics and compressive resilience of functional carbon foams scalably and sustainably derived from additively manufactured kraft paper

      , , , , , ,
      Additive Manufacturing
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Classifying drivers of global forest loss

          Global maps of forest loss depict the scale and magnitude of forest disturbance, yet companies, governments, and nongovernmental organizations need to distinguish permanent conversion (i.e., deforestation) from temporary loss from forestry or wildfire. Using satellite imagery, we developed a forest loss classification model to determine a spatial attribution of forest disturbance to the dominant drivers of land cover and land use change over the period 2001 to 2015. Our results indicate that 27% of global forest loss can be attributed to deforestation through permanent land use change for commodity production. The remaining areas maintained the same land use over 15 years; in those areas, loss was attributed to forestry (26%), shifting agriculture (24%), and wildfire (23%). Despite corporate commitments, the rate of commodity-driven deforestation has not declined. To end deforestation, companies must eliminate 5 million hectares of conversion from supply chains each year.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Highly compressible 3D periodic graphene aerogel microlattices

              Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.
                Bookmark

                Author and article information

                Journal
                Additive Manufacturing
                Additive Manufacturing
                Elsevier BV
                22148604
                October 2022
                October 2022
                : 58
                : 102992
                Article
                10.1016/j.addma.2022.102992
                115be9f9-aff7-4037-a000-7a0ecece08b7
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article