27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Radiated fields by polygonal core-shell nanowires

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We calculate the electromagnetic field radiated by tubular nanowires with prismatic geometry and infinite length. The polygonal geometry has implications on the electronic localization; the lowest energy states are localized at the edges of the prism and are separated by a considerable energy gap from the states localized on the facets. This localization can be controlled with external electric or magnetic fields. In particular, by applying a magnetic field transverse to the wire the states may become localized on the lateral regions of the shell, relatively to the direction of the field, leading to channels of opposite currents. Because of the prismatic geometry of the nanowire the current distribution, and hence the radiated electromagnetic field, have an anisotropic structure, which can be modified by the external fields. In this work we study hexagonal, square and triangular nanowires.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes.

          We report the growth and characterization of core/multishell nanowire radial heterostructures, and their implementation as efficient and synthetically tunable multicolor nanophotonic sources. Core/multishell nanowires were prepared by metal-organic chemical vapor deposition with an n-GaN core and InxGa1-xN/GaN/p-AlGaN/p-GaN shells, where variation of indium mole fraction is used to tune emission wavelength. Cross-sectional transmission electron microscopy studies reveal that the core/multishell nanowires are dislocation-free single crystals with a triangular morphology. Energy-dispersive X-ray spectroscopy clearly shows shells with distinct chemical compositions, and quantitatively confirms that the thickness and composition of individual shells can be well controlled during synthesis. Electrical measurements show that the p-AlGaN/p-GaN shell structure yields reproducible hole conduction, and electroluminescence measurements demonstrate that in forward bias the core/multishell nanowires function as light-emitting diodes, with tunable emission from 365 to 600 nm and high quantum efficiencies. The ability to synthesize rationally III-nitride core/multishell nanowire heterostructures opens up significant potential for integrated nanoscale photonic systems, including multicolor lasers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Optical, structural, and numerical investigations of GaAs/AlGaAs core-multishell nanowire quantum well tubes.

            The electronic properties of thin, nanometer scale GaAs quantum well tubes embedded inside the AlGaAs shell of a GaAs core-multishell nanowire are investigated using optical spectroscopies. Using numerical simulations to model cylindrically and hexagonally symmetric systems, we correlate these electronic properties with structural characterization by aberration-corrected scanning transmission electron microscopy of nanowire cross sections. These tubular quantum wells exhibit extremely high quantum efficiency and intense emission for extremely low submicrowatt excitation powers in both photoluminescence and photoluminescence excitation measurements. Numerical calculations of the confined eigenstates suggest that the electrons and holes in their ground states are confined to extremely localized one-dimensional filaments at the corners of the hexagonal structure which extend along the length of the nanowire.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Single-crystalline MgAl2O4 spinel nanotubes using a reactive and removable MgO nanowire template

                Bookmark

                Author and article information

                Journal
                21 April 2018
                Article
                1804.07959
                115eba96-d241-4e48-a0a1-a342e932fc5b

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                4 pages, 3 figures
                cond-mat.mes-hall

                Nanophysics
                Nanophysics

                Comments

                Comment on this article