9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metabarcoding using multiplexed markers increases species detection in complex zooplankton communities

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metabarcoding combines DNA barcoding with high‐throughput sequencing, often using one genetic marker to understand complex and taxonomically diverse samples. However, species‐level identification depends heavily on the choice of marker and the selected primer pair, often with a trade‐off between successful species amplification and taxonomic resolution. We present a versatile metabarcoding protocol for biomonitoring that involves the use of two barcode markers ( COI and 18S) and four primer pairs in a single high‐throughput sequencing run, via sample multiplexing. We validate the protocol using a series of 24 mock zooplanktonic communities incorporating various levels of genetic variation. With the use of a single marker and single primer pair, the highest species recovery was 77%. With all three COI fragments, we detected 62%–83% of species across the mock communities, while the use of the 18S fragment alone resulted in the detection of 73%–75% of species. The species detection level was significantly improved to 89%–93% when both markers were used. Furthermore, multiplexing did not have a negative impact on the proportion of reads assigned to each species and the total number of species detected was similar to when markers were sequenced alone. Overall, our metabarcoding approach utilizing two barcode markers and multiple primer pairs per barcode improved species detection rates over a single marker/primer pair by 14% to 35%, making it an attractive and relatively cost‐effective method for biomonitoring natural zooplankton communities. We strongly recommend combining evolutionary independent markers and, when necessary, multiple primer pairs per marker to increase species detection (i.e., reduce false negatives) in metabarcoding studies.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents

          Introduction The PCR-based analysis of homologous genes has become one of the most powerful approaches for species detection and identification, particularly with the recent availability of Next Generation Sequencing platforms (NGS) making it possible to identify species composition from a broad range of environmental samples. Identifying species from these samples relies on the ability to match sequences with reference barcodes for taxonomic identification. Unfortunately, most studies of environmental samples have targeted ribosomal markers, despite the fact that the mitochondrial Cytochrome c Oxidase subunit I gene (COI) is by far the most widely available sequence region in public reference libraries. This is largely because the available versatile (“universal”) COI primers target the 658 barcoding region, whose size is considered too large for many NGS applications. Moreover, traditional barcoding primers are known to be poorly conserved across some taxonomic groups. Results We first design a new PCR primer within the highly variable mitochondrial COI region, the “mlCOIintF” primer. We then show that this newly designed forward primer combined with the “jgHCO2198” reverse primer to target a 313 bp fragment performs well across metazoan diversity, with higher success rates than versatile primer sets traditionally used for DNA barcoding (i.e. LCO1490/HCO2198). Finally, we demonstrate how the shorter COI fragment coupled with an efficient bioinformatics pipeline can be used to characterize species diversity from environmental samples by pyrosequencing. We examine the gut contents of three species of planktivorous and benthivorous coral reef fish (family: Apogonidae and Holocentridae). After the removal of dubious COI sequences, we obtained a total of 334 prey Operational Taxonomic Units (OTUs) belonging to 14 phyla from 16 fish guts. Of these, 52.5% matched a reference barcode (>98% sequence similarity) and an additional 32% could be assigned to a higher taxonomic level using Bayesian assignment. Conclusions The molecular analysis of gut contents targeting the 313 COI fragment using the newly designed mlCOIintF primer in combination with the jgHCO2198 primer offers enormous promise for metazoan metabarcoding studies. We believe that this primer set will be a valuable asset for a range of applications from large-scale biodiversity assessments to food web studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding.

            Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90-0.99) vs. 0.58 (CI = 0.50-0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA-based approach has the potential to become the next-generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species

              We developed a set of universal PCR primers (MiFish-U/E) for metabarcoding environmental DNA (eDNA) from fishes. Primers were designed using aligned whole mitochondrial genome (mitogenome) sequences from 880 species, supplemented by partial mitogenome sequences from 160 elasmobranchs (sharks and rays). The primers target a hypervariable region of the 12S rRNA gene (163–185 bp), which contains sufficient information to identify fishes to taxonomic family, genus and species except for some closely related congeners. To test versatility of the primers across a diverse range of fishes, we sampled eDNA from four tanks in the Okinawa Churaumi Aquarium with known species compositions, prepared dual-indexed libraries and performed paired-end sequencing of the region using high-throughput next-generation sequencing technologies. Out of the 180 marine fish species contained in the four tanks with reference sequences in a custom database, we detected 168 species (93.3%) distributed across 59 families and 123 genera. These fishes are not only taxonomically diverse, ranging from sharks and rays to higher teleosts, but are also greatly varied in their ecology, including both pelagic and benthic species living in shallow coastal to deep waters. We also sampled natural seawaters around coral reefs near the aquarium and detected 93 fish species using this approach. Of the 93 species, 64 were not detected in the four aquarium tanks, rendering the total number of species detected to 232 (from 70 families and 152 genera). The metabarcoding approach presented here is non-invasive, more efficient, more cost-effective and more sensitive than the traditional survey methods. It has the potential to serve as an alternative (or complementary) tool for biodiversity monitoring that revolutionizes natural resource management and ecological studies of fish communities on larger spatial and temporal scales.
                Bookmark

                Author and article information

                Contributors
                melania.cristescu@mcgill.ca
                Journal
                Evol Appl
                Evol Appl
                10.1111/(ISSN)1752-4571
                EVA
                Evolutionary Applications
                John Wiley and Sons Inc. (Hoboken )
                1752-4571
                15 September 2018
                December 2018
                : 11
                : 10 ( doiID: 10.1111/eva.2018.11.issue-10 )
                : 1901-1914
                Affiliations
                [ 1 ] Department of Biology McGill University Montreal Quebec Canada
                [ 2 ] Pacific Biological Station, Fisheries and Oceans Canada Nanaimo British Columbia Canada
                [ 3 ]Present address: Department of Biological Sciences University of Massachusetts Lowell One University Avenue Lowell MA
                Author notes
                [*] [* ] Correspondence

                Melania E. Cristescu, Department of Biology, McGill University, Montreal, Quebec, Canada.

                Email: melania.cristescu@ 123456mcgill.ca

                Author information
                http://orcid.org/0000-0002-0854-4040
                Article
                EVA12694
                10.1111/eva.12694
                6231476
                30459837
                11723831-8421-41ac-aa28-e5148907d17e
                © 2018 McGill University. Evolutionary Applications published by John Wiley & Sons Ltd

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 April 2018
                : 02 August 2018
                : 05 August 2018
                Page count
                Figures: 6, Tables: 4, Pages: 14, Words: 10314
                Funding
                Funded by: Natural Sciences and Engineering Research Council of Canada
                Award ID: NSERC RGPIN‐2017‐04331
                Funded by: Canada Research Chairs
                Funded by: Canadian Aquatic Invasive Species Network
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                eva12694
                December 2018
                Converter:WILEY_ML3GV2_TO_NLMPMC version:version=5.5.1 mode:remove_FC converted:12.11.2018

                Evolutionary Biology
                18s,cytochrome c oxidase subunit i,metabarcoding,multigene,multiple primer pairs,zooplankton

                Comments

                Comment on this article