64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of efavirenz pharmacokinetics and pharmacogenetics on neuropsychological disorders in Ugandan HIV-positive patients with or without tuberculosis: a prospective cohort study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          HIV infection, anti-tuberculosis and efavirenz therapy are associated with neuropsychological effects. We evaluated the influence of rifampicin cotreatment, efavirenz pharmacokinetics and pharmacogenetics on neuropsychiatric disorders in Ugandan HIV patients with or without tuberculosis coinfection.

          Methods

          197 treatment naïve Ugandan HIV patients, of whom 138 were TB co-infected, enrolled prospectively and received efavirenz based HAART. TB-HIV confected patients received concomitant rifampicin based anti-TB therapy. Genotypes for CYP2B6 (* 6, *11), CYP3A5 ( *3, *6, *7), ABCB1 (c.3435C>T and c.4036 A/G rs3842), CYP2A6 (*9, *17) and NR1I3 rs3003596 T/C were determined. Efavirenz plasma concentrations were serially quantified at 3rd day, 1st, 2nd, 4th, 6th, 8th and 12th weeks during therapy. Efavirenz neuropsychiatric symptoms were evaluated in terms of sleep disorders, hallucinations and cognitive effects at baseline, at two and twelve weeks of efavirenz treatment using a modified Mini Mental State Examination (MMSE) score.

          Results

          During the first twelve weeks of ART, 73.6% of the patients experienced at least one efavirenz related neuropsychiatric symptom. Commonest symptoms experienced were sleep disorders 60.5% (n=124) and hallucination 30.7% (n=63). Neuropsychiatric symptoms during HAART were significantly predicted by efavirenz plasma concentrations consistently. Rifampicin cotreatment reduced plasma efavirenz concentrations significantly only during the first week but not afterwards. There was no significant difference in the incidence of neuropsychiatric symptoms between patients receiving efavirenz with or without rifampicin cotreatment. CYP2B6*6 and ABCB1 c.4036 A/G genotype significantly predicted efavirenz concentrations. The tendency of CYP2B6*6 genotype association with higher incidence of having vivid dream (p=0.05), insomnia (p=0.19) and tactile hallucination (p=0.09) was observed mainly at week-2.

          Conclusions

          Efavirenz related neuropsychiatric symptoms are common among Ugandan HIV patients receiving ART and is mainly predicted by higher efavirenz plasma concentrations and CYP2B6 genotype but not by rifampicin based anti-TB co-treatment.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Human immunodeficiency virus-associated neurocognitive disorders: Mind the gap.

          Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HANDs) remain among the most common disorders in people infected with HIV, even in an era when potent antiretroviral therapy is widely deployed. This review discusses the clinical features of HANDs and the implications for more effective treatment. With the improved survival of individuals treated with antiretrovirals, comorbid conditions are increasingly salient, including particularly coinfection with hepatitis C and the effects of aging. This review attempts to answer why there appears to be a therapeutic gap between the salutary effects of antiretroviral regimens and normalization of neurological function. A second gap is found in the understanding of the pathophysiology of HANDs. This review addresses this and discusses the animal models that have helped to elucidate these mechanisms. Although triggered by productive HIV infection of brain macrophages, aberrant and sustained immune activation appears to play a major role in inducing HANDs, and may explain the often incomplete neurological response to highly active antiretroviral therapy. Novel therapies aimed at persistent central nervous system inflammation will be needed to close this gap.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity.

            We used human liver microsomes (HLMs) and recombinant cytochromes P450 (P450s) to identify the routes of efavirenz metabolism and the P450s involved. In HLMs, efavirenz undergoes primary oxidative hydroxylation to 8-hydroxyefavirenz (major) and 7-hydroxyefavirenz (minor) and secondary metabolism to 8,14-dihydroxyefavirenz. The formation of 8-hydroxyefavirenz in two HLMs showed sigmoidal kinetics (average apparent Km, 20.2 micro M; Vmax, 140 pmol/min/mg protein; and Hill coefficient, 1.5), whereas that of 7-hydroxyefavirenz formation was characterized by hyperbolic kinetics (Km, 40.1 micro M and Vmax, 20.5 pmol/min/mg protein). In a panel of 10 P450s, CYP2B6 formed 8-hydroxyefavirenz and 8,14-dihydroxyefavirenz from efavirenz (10 micro M) at the highest rate. The Km value for the formation of 8-hydroxyefavirenz in CYP2B6 derived from hyperbolic Eq. 12.4 micro M) was close to that obtained in HLMs (Km, 20.2 micro M). None of the P450s tested showed activity toward 7-hydroxylation of efavirenz. When 8-hydroxyefavirenz (2.5 micro M) was used as a substrate, 8,14-dihydroxyefavirenz was formed by CYP2B6 at the highest rate, and its kinetics showed substrate inhibition (Ksi, approximately 94 micro M in HLMs and approximately 234 micro M in CYP2B6). In a panel of 11 HLMs, 8-hydroxyefavirenz and 8,14-dihydroxyefavirenz formation rates from efavirenz (10 micro M) correlated significantly with the activity of CYP2B6 and CYP3A. N,N',N"-Triethylenethiophosphoramide (thioTEPA; 50 micro M) inhibited the formation rates of 8-hydroxyefavirenz and 8,14-dihydroxyefavirenz from efavirenz (10 micro M) by > or = 60% in HLMs) and CYP2B6, with Ki values < 4 micro M. In conclusion, CYP2B6 is the principal catalyst of efavirenz sequential hydroxylation. Efavirenz systemic exposure is likely to be subject to interindividual variability in CYP2B6 activity and to drug interactions involving this isoform. Efavirenz may be a valuable phenotyping tool to study the role of CYP2B6 in human drug metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antiretroviral neurotoxicity.

              Combination antiretroviral therapy (CART) has proven to effectively suppress systemic HIV burden, however, poor penetration into the central nervous system (CNS) provides incomplete protection. Although the severity of HIV-associated neurocognitive disorders (HAND) has been reduced, neurological disease is expected to exert an increasing burden as HIV-infected patients live longer. Strategies to enhance penetration of antiretroviral compounds into the CNS could help to control HIV replication in this reservoir but also carries an increased risk of neurotoxicity. Efforts to target antiretroviral compounds to the CNS will have to balance these risks against the potential gain. Unfortunately, little information is available on the actions of antiretroviral compounds in the CNS, particularly at concentrations that provide effective virus suppression. The current studies evaluated the direct effects of 15 antiretroviral compounds on neurons to begin to provide basic neurotoxicity data that will serve as a foundation for the development of dosing and drug selection guidelines. Using sensitive indices of neural damage, we found a wide range of toxicities, with median toxic concentrations ranging from 2 to 10,000 ng/ml. Some toxic concentrations overlapped concentrations currently seen in the CSF but the level of toxicity was generally modest at clinically relevant concentrations. Highest neurotoxicities were associated with abacavir, efavarenz, etravirine, nevaripine, and atazanavir, while the lowest were with darunavir, emtracitabine, tenofovir, and maraviroc. No additive effects were seen with combinations used clinically. These data provide initial evidence useful for the development of treatment strategies that might reduce the risk of antiretroviral neurotoxicity.
                Bookmark

                Author and article information

                Journal
                BMC Infect Dis
                BMC Infect. Dis
                BMC Infectious Diseases
                BioMed Central
                1471-2334
                2013
                4 June 2013
                : 13
                : 261
                Affiliations
                [1 ]Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE- 141 86, Stockholm, Sweden
                [2 ]Department of Pharmacology & Therapeutics, College of Health Sciences, Makerere University, Kampala, Uganda
                [3 ]Department of Internal Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
                [4 ]Department of Psychiatry, College of Health Sciences, Makerere University, Kampala, Uganda
                [5 ]School of Public Health, College of Health Sciences, Makerere University, Kampala, Uganda
                Article
                1471-2334-13-261
                10.1186/1471-2334-13-261
                3680019
                23734829
                11790ab3-839d-4984-9d01-22c242cdbf29
                Copyright ©2013 Mukonzo et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 November 2012
                : 25 May 2013
                Categories
                Research Article

                Infectious disease & Microbiology
                efavirenz,neuropsychiatric toxicity,rifampicin,cyp2b6,hiv,tuberculosis,cns,antiretroviral therapy,ugandans

                Comments

                Comment on this article