15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Laser Ablation for Cancer: Past, Present and Future

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Laser ablation (LA) is gaining acceptance for the treatment of tumors as an alternative to surgical resection. This paper reviews the use of lasers for ablative and surgical applications. Also reviewed are solutions aimed at improving LA outcomes: hyperthermal treatment planning tools and thermometric techniques during LA, used to guide the surgeon in the choice and adjustment of the optimal laser settings, and the potential use of nanoparticles to allow biologic selectivity of ablative treatments. Promising technical solutions and a better knowledge of laser-tissue interaction should allow LA to be used in a safe and effective manner as a cancer treatment.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: not found

          Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance.

          Metal nanoshells are a class of nanoparticles with tunable optical resonances. In this article, an application of this technology to thermal ablative therapy for cancer is described. By tuning the nanoshells to strongly absorb light in the near infrared, where optical transmission through tissue is optimal, a distribution of nanoshells at depth in tissue can be used to deliver a therapeutic dose of heat by using moderately low exposures of extracorporeally applied near-infrared (NIR) light. Human breast carcinoma cells incubated with nanoshells in vitro were found to have undergone photothermally induced morbidity on exposure to NIR light (820 nm, 35 W/cm2), as determined by using a fluorescent viability stain. Cells without nanoshells displayed no loss in viability after the same periods and conditions of NIR illumination. Likewise, in vivo studies under magnetic resonance guidance revealed that exposure to low doses of NIR light (820 nm, 4 W/cm2) in solid tumors treated with metal nanoshells reached average maximum temperatures capable of inducing irreversible tissue damage (DeltaT = 37.4 +/- 6.6 degrees C) within 4-6 min. Controls treated without nanoshells demonstrated significantly lower average temperatures on exposure to NIR light (DeltaT < 10 degrees C). These findings demonstrated good correlation with histological findings. Tissues heated above the thermal damage threshold displayed coagulation, cell shrinkage, and loss of nuclear staining, which are indicators of irreversible thermal damage. Control tissues appeared undamaged.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles.

            Efficient conversion of strongly absorbed light by plasmonic gold nanoparticles to heat energy and their easy bioconjugation suggest their use as selective photothermal agents in molecular cancer cell targeting. Two oral squamous carcinoma cell lines (HSC 313 and HOC 3 Clone 8) and one benign epithelial cell line (HaCaT) were incubated with anti-epithelial growth factor receptor (EGFR) antibody conjugated gold nanoparticles and then exposed to continuous visible argon ion laser at 514nm. It is found that the malignant cells require less than half the laser energy to be killed than the benign cells after incubation with anti-EGFR antibody conjugated Au nanoparticles. No photothermal destruction is observed for all types of cells in the absence of nanoparticles at four times energy required to kill the malignant cells with anti-EGFR/Au conjugates bonded. Au nanoparticles thus offer a novel class of selective photothermal agents using a CW laser at low powers. The potential of using this selective technique in molecularly targeted photothermal therapy in vivo is discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gold nanoparticles as novel agents for cancer therapy.

              Gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated as drug carriers, photothermal agents, contrast agents and radiosensitisers. This review introduces the field of nanotechnology with a focus on recent gold nanoparticle research which has led to early-phase clinical trials. In particular, the pre-clinical evidence for gold nanoparticles as sensitisers with ionising radiation in vitro and in vivo at kilovoltage and megavoltage energies is discussed.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                J Funct Biomater
                J Funct Biomater
                jfb
                Journal of Functional Biomaterials
                MDPI
                2079-4983
                14 June 2017
                June 2017
                : 8
                : 2
                : 19
                Affiliations
                [1 ]Unit of Measurements and Biomedical Instrumentation, Center for Integrated Research, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, Rome 00128, Italy
                [2 ]IHU (Institute of Image-Guided Surgery), S/c Ircad, Strasbourg 67091, France; paola.saccomandi@ 123456ihu-strasbourg.eu
                [3 ]Department of Surgery, City of Hope, Duarte-Main Campus, 1500 East Duarte Road, Duarte, CA 91010, USA; yfong@ 123456coh.org
                Author notes
                [* ]Correspondence: e.schena@ 123456unicampus.it ; Tel.: +39-06-2254-19650
                Article
                jfb-08-00019
                10.3390/jfb8020019
                5492000
                28613248
                11855e47-a19d-4c70-b354-e903a1c3ab1e
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 April 2017
                : 13 June 2017
                Categories
                Review

                laser ablation,cancer therapy,local cancer therapy,thermal ablation,thermography

                Comments

                Comment on this article

                scite_

                Similar content261

                Cited by27

                Most referenced authors1,429