4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry.

      Analytical Biochemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A method based on isotope dilution-mass spectrometry was developed for the determination of nine cholesterol oxidation products in human plasma. The cholesterol oxidation products determined were cholest-5-ene-3 beta,7 alpha-diol, cholest-5-ene-3 beta,7 beta-diol (7 alpha- and 7 beta-hydroxycholesterol, respectively), 3 beta-hydroxycholest-5-en-7-one(7-oxocholesterol),5,6 alpha-epoxy-5 alpha- cholestan-3 beta-ol (cholesterol-5 alpha,6 alpha-epoxide),5,6 beta-epoxy-5 beta-cholestan-3 beta-ol (cholesterol-5 beta,6 beta-epoxide), (cholesterol-5 beta,6 beta-epoxide), cholestane-3 beta,5 alpha,6 beta-triol, cholest-5-ene-3 beta,24-diol (24-hydroxycholesterol), cholest-5-ene-3 beta,25-diol (25-hydroxycholesterol), and cholest-5-ene-3 beta,27-diol (27-hydroxycholesterol). A corresponding deuterium-labeled internal standard, containing 3 to 6 deuterium atoms, was synthesized for each cholesterol oxidation product except 5 beta,6 beta-epoxycholesterol which was determined using the internal standard for 5 alpha,6 alpha-epoxycholesterol. Plasma from 31 healthy volunteers was analyzed by the new method and 27-, 24-, and 7 alpha-hydroxycholesterol were the most abundant cholesterol oxidation products (mean values 154, 64, and 43 ng/ml, respectively). The other oxysterols determined were present in concentrations lower than 30 ng/ml. Males had higher 27-hydroxycholesterol concentrations in plasma than females. The 5,6-oxygenated products were present mainly unesterified while the other oxidation products were mostly in esterified form.

          Related collections

          Author and article information

          Journal
          7778789
          10.1006/abio.1995.1110

          Comments

          Comment on this article

          scite_